Wyznacz równanie okręgu opisanego na trójkącie o wierzchołkach
A (1,1); B(-1,3) oraz C (4,5).
A = (1; 1), B = ( -1; 3) , C = ( 4; 5)
( x - a)^2 + ( y - b)^2 = r^2 - równanie okręgu
==========================================
Mamy
1) ( 1 - a)^2 + (1 - b)^2 = r^2
2) ( - 1 - a)^2 + ( 3 - b)^2 = r^2
3) ( 4 - a)^2 + ( 5 - b )^2 = r^2
------------------------------------------
4) 1 - 2a + a^2 + 1 - 2b + b^2 = r2
5) 1 + 2a + a^2 + 9 - 6b + b^2 = r^2
6) 16 - 8a + a^2 + 25 - 10b + b^2 = r^2
-------------------------------------------------
Od 5) odejmujemy 4)
4a + 8 - 4 b = 0
Od 6( odejmujemy 5)
15 - 10 a + 16 - 4 b = 0
------------------------------
4b = 4a + 8 / : 4
31 - 10a - 4b = 0
-----------------------
b = a + 2
31 - 10 a - 4*(a + 2) = 0
31 - 10 a - 4a - 8 = 0
14a = 23
a = 23/14
===========
b = 23/14 + 2 = 23/14 + 28/14 = 51/14
========================================
r^2 = ( 1 - 23/14)^2 + ( 1 - 51/14)^2 = ( -9/14)^2 + (- 37/14)^2 =
= 81/196 + 1369/196 = 1450/196 = 725/98
Odp.
Równanie okręgu opisanego na trójkącie ABC ma postać
( x - 23/14)^2 + ( y - 51/14)^2 = 725/98
=================================================
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
A = (1; 1), B = ( -1; 3) , C = ( 4; 5)
( x - a)^2 + ( y - b)^2 = r^2 - równanie okręgu
==========================================
Mamy
1) ( 1 - a)^2 + (1 - b)^2 = r^2
2) ( - 1 - a)^2 + ( 3 - b)^2 = r^2
3) ( 4 - a)^2 + ( 5 - b )^2 = r^2
------------------------------------------
4) 1 - 2a + a^2 + 1 - 2b + b^2 = r2
5) 1 + 2a + a^2 + 9 - 6b + b^2 = r^2
6) 16 - 8a + a^2 + 25 - 10b + b^2 = r^2
-------------------------------------------------
Od 5) odejmujemy 4)
4a + 8 - 4 b = 0
Od 6( odejmujemy 5)
15 - 10 a + 16 - 4 b = 0
------------------------------
4b = 4a + 8 / : 4
31 - 10a - 4b = 0
-----------------------
b = a + 2
31 - 10 a - 4*(a + 2) = 0
------------------------------
31 - 10 a - 4a - 8 = 0
14a = 23
a = 23/14
===========
b = 23/14 + 2 = 23/14 + 28/14 = 51/14
========================================
r^2 = ( 1 - 23/14)^2 + ( 1 - 51/14)^2 = ( -9/14)^2 + (- 37/14)^2 =
= 81/196 + 1369/196 = 1450/196 = 725/98
========================================
Odp.
Równanie okręgu opisanego na trójkącie ABC ma postać
( x - 23/14)^2 + ( y - 51/14)^2 = 725/98
=================================================