" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
sin²(x) + cos²(x) = (√3 + 1)•sin(x)•cos(x)
2•sin(x)•cos(x) = sin(2•x) => sin(x)•cos(x) = (sin(2•x))/2
sin²(x) = 1 - cos²(x)
1 - cos²(x) + cos²(x) = (√3 + 1)•(sin(2•x))/2
1 = (√3 + 1)•(sin(2•x))/2
2 = (√3 + 1)•sin(2•x)
sin(2•x) = 2/(√3 + 1)
2•x = arcsin(2/(√3 + 1)) + 2•π•n, n ∈ Z
x = 0,5•arcsin(2/(√3 + 1)) + π•n, n ∈ Z
2.
sin²x + √3cos²x = (√3 + 1)sinx•cosx
sin²x/cos²x + √3cos²x/cos²x = (√3 + 1)sinx•cosx/cos²x
tg²x + √3 = (√3 + 1)tgx
tg²x + √3 = √3tgx + tgx
tgx = y
y² + √3 = y√3 + y
y(y -√3) = y - √3
y = 1
y = √3
tgx = 1 => x = π/4 + πn, n ∈ Z
tgx = √3 => x= π/3 + πn, n ∈ Z