Zadanie 1 i 2 w załaczniku Ciągi
z.1
a) - 4/27, 2/9, - 1/3 , 1/2
zatem
2/ 9 : ( - 4/27) = 2/8 *( - 27/ 4) = - 3/2
- 1/3 : ( 2/9) = - 1/ 3 *( 9/2) = - 3/2
1/2 : ( - 1/3) = 1/ 2* ( - 3/1) = - 3/2
q = - 3/2
Ten ciąg jest geometryczny, bo a2 : a1 = a3 : a2 = a4 : a3 = - 3/2
=====================================================
b)
14, 2, 2/ 7, 1/2
2 : 14 = 2/14 = 1/7
2/7 : 2 = 1/7
1/2 : ( 2/7) = 1/ 2 * ( 7/2) = 7 / 4
Ten ciąg nie jest ciagiem geometrycznym.
-----------------------------------------------------------------
c)
5 p(5) , p(5), 1 / p(5) , 1 / [ 5 p(5)]
p(5) : 5 p(5) = 1/5
1 / p(5) : p(5) = 1 / [ p(5)*p(5)] = 1/5
1 / [ 5 p(5)] : 1/ p(5) = 1 / [ 5 p(5)] * p(5) = 1/5
Ten ciąg jest ciagiem geometrycznym.
q = 1/5
============
z.2
a) 10, 100, 1000, ....
q = 100 : 10 = 10
a4 = 1000*10 = 10 000
-----------------------------------
p3st(5) , p3st(25), 5, 5 p3st( 5), ...
q = p3st (25) : p3st(5) = p3st( 25 : 5) = p3st(5)
więc
a5 = 5 p3st(5)* p3st(5) = 5 p3st( 25)
------------------------------------------------------
3/7, - 1, 7/3, - 49/ 9, ...
q = - 1 : ( 3/7) = - 1*( 7/3) = - 7/3
a5 = a4*q = - 49 / 9 * ( - 7/3) = 343/27
----------------------------------------------------
d)
1., - 1, 1, - 1, ...
q = - 1 : 1 = - 1
a5 = a4* q = ( -1)*(-1) = 1
--------------------------------------
e)
200; 2; 0,02 ; 0,0002; ...
q = 2 : 200 = 0,01
a5 =a4 *q = 0,0002 * 0,01 = 0,000002
f)
1 + p(5) ; ( 1 + p(5))^3 ; ...
q = ( 1 + p(5))^ 3 : ( 1 + p(5)) = ( 1 + p(5))^2
a3 = a2*q = ( 1 + p(5))^3 *( 1 + p(5))^2 = ( 1 + p(5))^5
------------------------------------------------------------------------------
p(5) - pierwiastek kwadratowy z5
Rozwiązanie w załączniku.
Liczę na NAJ.
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
z.1
a) - 4/27, 2/9, - 1/3 , 1/2
zatem
2/ 9 : ( - 4/27) = 2/8 *( - 27/ 4) = - 3/2
- 1/3 : ( 2/9) = - 1/ 3 *( 9/2) = - 3/2
1/2 : ( - 1/3) = 1/ 2* ( - 3/1) = - 3/2
q = - 3/2
Ten ciąg jest geometryczny, bo a2 : a1 = a3 : a2 = a4 : a3 = - 3/2
=====================================================
b)
14, 2, 2/ 7, 1/2
zatem
2 : 14 = 2/14 = 1/7
2/7 : 2 = 1/7
1/2 : ( 2/7) = 1/ 2 * ( 7/2) = 7 / 4
Ten ciąg nie jest ciagiem geometrycznym.
-----------------------------------------------------------------
c)
5 p(5) , p(5), 1 / p(5) , 1 / [ 5 p(5)]
zatem
p(5) : 5 p(5) = 1/5
1 / p(5) : p(5) = 1 / [ p(5)*p(5)] = 1/5
1 / [ 5 p(5)] : 1/ p(5) = 1 / [ 5 p(5)] * p(5) = 1/5
Ten ciąg jest ciagiem geometrycznym.
q = 1/5
============
z.2
a) 10, 100, 1000, ....
q = 100 : 10 = 10
a4 = 1000*10 = 10 000
-----------------------------------
b)
p3st(5) , p3st(25), 5, 5 p3st( 5), ...
q = p3st (25) : p3st(5) = p3st( 25 : 5) = p3st(5)
więc
a5 = 5 p3st(5)* p3st(5) = 5 p3st( 25)
------------------------------------------------------
c)
3/7, - 1, 7/3, - 49/ 9, ...
q = - 1 : ( 3/7) = - 1*( 7/3) = - 7/3
więc
a5 = a4*q = - 49 / 9 * ( - 7/3) = 343/27
----------------------------------------------------
d)
1., - 1, 1, - 1, ...
q = - 1 : 1 = - 1
więc
a5 = a4* q = ( -1)*(-1) = 1
--------------------------------------
e)
200; 2; 0,02 ; 0,0002; ...
q = 2 : 200 = 0,01
zatem
a5 =a4 *q = 0,0002 * 0,01 = 0,000002
------------------------------------------------------
f)
1 + p(5) ; ( 1 + p(5))^3 ; ...
q = ( 1 + p(5))^ 3 : ( 1 + p(5)) = ( 1 + p(5))^2
więc
a3 = a2*q = ( 1 + p(5))^3 *( 1 + p(5))^2 = ( 1 + p(5))^5
------------------------------------------------------------------------------
p(5) - pierwiastek kwadratowy z5
Rozwiązanie w załączniku.
Liczę na NAJ.