Rozwiaż: log_{\frac{1}{3}}\frac{x}{2-x}[/tex] \geq 0
log_₁/₃ [x/(2-x)] ≥ 0
Z: x/(2-x) > 0
x(2-x) > 0
x ≠ 0, x ≠2
D = R \ {0;2}
(1/3)⁰ ≥ x/(2-x)
x/(2-x) ≤ 1 I*(2-x) > 0
x ≤ 2-x
x+x ≤ 2
2x ≤ 2 /:2
x ≤ 1
x ∈ (0;1>
------------
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
log_₁/₃ [x/(2-x)] ≥ 0
Z: x/(2-x) > 0
x(2-x) > 0
x ≠ 0, x ≠2
D = R \ {0;2}
(1/3)⁰ ≥ x/(2-x)
x/(2-x) ≤ 1 I*(2-x) > 0
x ≤ 2-x
x+x ≤ 2
2x ≤ 2 /:2
x ≤ 1
x ∈ (0;1>
------------