Pole powierzchni stożka wynosi 50pi, z czego 75% stanowi pole powierzchni bocznej. Ile wynosi objętość tego stożka?
Pc=50π
Pb=75% ·50π =3/4 ·50π =37,5πcm²
Pc=Pp+Pb
50π=Pp+37,5π
Pp=50π -37,5π
Pp=12,5π
Pp=πr²
12,5π =πr² /:π
r²=12,5
r=√12½ =√25/√2 =5/√2 =5√2/2 =2.5√2cm
Pb=πrl
37,5π =π·2,5√2 ·l /:π
37,5=2,5√2 ·l
l=37,5 /2,5√2=15/√2 =15√2/2 =7,5√2
z pitagorasa
r²+h² =l²
(2,5√2)² +h² =(7,5√2)²
12,5+h² =112,5
h²=112,5-12,5
h²=100
h=√100=10
objetosc stozka:
V=⅓Pp·h=⅓·12,5π ·10=125/3 π j³= 41²/₃ π j³
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Pc=50π
Pb=75% ·50π =3/4 ·50π =37,5πcm²
Pc=Pp+Pb
50π=Pp+37,5π
Pp=50π -37,5π
Pp=12,5π
Pp=πr²
12,5π =πr² /:π
r²=12,5
r=√12½ =√25/√2 =5/√2 =5√2/2 =2.5√2cm
Pb=πrl
37,5π =π·2,5√2 ·l /:π
37,5=2,5√2 ·l
l=37,5 /2,5√2=15/√2 =15√2/2 =7,5√2
z pitagorasa
r²+h² =l²
(2,5√2)² +h² =(7,5√2)²
12,5+h² =112,5
h²=112,5-12,5
h²=100
h=√100=10
objetosc stozka:
V=⅓Pp·h=⅓·12,5π ·10=125/3 π j³= 41²/₃ π j³