Oblicz promień okręgu opisanego na równoramiennym trójkącie prostokątnym, którego obwód jest równy:
a)4
b)1
AL = 4czyli 2a + a√2 = 4 ----> a*( 2 + √2) = 4a = 4 / (2 +√2) =[4(2 - √2] / [(2+√2)*(2 - √2}] = [4(2-√2)]/2 == 2(2 -√2) = 4 - 2√2d = 2r = a√2 = [4 - 2√2]*√2 = 4√2 - 4r = (4√2 - 4) /2 = 2√2 - 2Odp. r = 2√2 - 2
BL = 1czyli2a + a√2 = 1 ---> a(2 +√2) = 1 ---> a = 1/(2+√2)== [1*(2 -√2)]/ [(2+√2)*(2 - √2)] = [2 - √2] /2 = 1 - √2/2a = 1 - 0,5 √2d = 2r = a√2 = (1 - 0,5√2)*√2 = √2 - 0,5*2 = √2 - 12r = √2 -1 ----> r = [√2 - 1] /2Odp. r = 0,5*(√2 -1 )
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
A
L = 4
czyli 2a + a√2 = 4 ----> a*( 2 + √2) = 4
a = 4 / (2 +√2) =[4(2 - √2] / [(2+√2)*(2 - √2}] = [4(2-√2)]/2 =
= 2(2 -√2) = 4 - 2√2
d = 2r = a√2 = [4 - 2√2]*√2 = 4√2 - 4
r = (4√2 - 4) /2 = 2√2 - 2
Odp. r = 2√2 - 2
B
L = 1
czyli
2a + a√2 = 1 ---> a(2 +√2) = 1 ---> a = 1/(2+√2)=
= [1*(2 -√2)]/ [(2+√2)*(2 - √2)] = [2 - √2] /2 = 1 - √2/2
a = 1 - 0,5 √2
d = 2r = a√2 = (1 - 0,5√2)*√2 = √2 - 0,5*2 = √2 - 1
2r = √2 -1 ----> r = [√2 - 1] /2
Odp. r = 0,5*(√2 -1 )