Oblicz granice (nie można korzystać z reguły de l'Hospitala)
Proszę o rozpisanie i wyjaśnienie. Można rozwiązać na kartce i dodać jako załącznik ;-)
a)
b)
c)
d)
e)
f)
g)
h)
i)
j)
k)
l)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
a)![\lim_{x\to1}{\frac{x^n-1}{x-1}}\\ x^n-1=(x-1)(x^{n-1}+x^{n-2}+\ldots+x+1)\\ \lim_{x\to1}{\frac{(x-1)(x^{n-1}+x^{n-2}+\ldots+1)}{x-1}}=n \lim_{x\to1}{\frac{x^n-1}{x-1}}\\ x^n-1=(x-1)(x^{n-1}+x^{n-2}+\ldots+x+1)\\ \lim_{x\to1}{\frac{(x-1)(x^{n-1}+x^{n-2}+\ldots+1)}{x-1}}=n](https://tex.z-dn.net/?f=%5Clim_%7Bx%5Cto1%7D%7B%5Cfrac%7Bx%5En-1%7D%7Bx-1%7D%7D%5C%5C+x%5En-1%3D%28x-1%29%28x%5E%7Bn-1%7D%2Bx%5E%7Bn-2%7D%2B%5Cldots%2Bx%2B1%29%5C%5C+%5Clim_%7Bx%5Cto1%7D%7B%5Cfrac%7B%28x-1%29%28x%5E%7Bn-1%7D%2Bx%5E%7Bn-2%7D%2B%5Cldots%2B1%29%7D%7Bx-1%7D%7D%3Dn)
b)![lim_{x\to25}{\frac{\sqrt{x}-5}{x-25}}=\lim_{x\to25}{\frac{\sqrt{x}-5}{(\sqrt{x}-5)(\sqrt{x}+5)}}=0.1 lim_{x\to25}{\frac{\sqrt{x}-5}{x-25}}=\lim_{x\to25}{\frac{\sqrt{x}-5}{(\sqrt{x}-5)(\sqrt{x}+5)}}=0.1](https://tex.z-dn.net/?f=lim_%7Bx%5Cto25%7D%7B%5Cfrac%7B%5Csqrt%7Bx%7D-5%7D%7Bx-25%7D%7D%3D%5Clim_%7Bx%5Cto25%7D%7B%5Cfrac%7B%5Csqrt%7Bx%7D-5%7D%7B%28%5Csqrt%7Bx%7D-5%29%28%5Csqrt%7Bx%7D%2B5%29%7D%7D%3D0.1)
c)![\lim_{x \to 0}{\frac{\sqrt{x^2+1}-\sqrt{x+1}}{1- \sqrt{x+1}}}\\ (a^2-b^2)=(a-b)(a+b)\\ (a-b)=\frac{a^2-b^2}{a+b} \lim_{x \to 0}{\frac{\sqrt{x^2+1}-\sqrt{x+1}}{1- \sqrt{x+1}}}\\ (a^2-b^2)=(a-b)(a+b)\\ (a-b)=\frac{a^2-b^2}{a+b}](https://tex.z-dn.net/?f=%5Clim_%7Bx+%5Cto+0%7D%7B%5Cfrac%7B%5Csqrt%7Bx%5E2%2B1%7D-%5Csqrt%7Bx%2B1%7D%7D%7B1-+%5Csqrt%7Bx%2B1%7D%7D%7D%5C%5C+%28a%5E2-b%5E2%29%3D%28a-b%29%28a%2Bb%29%5C%5C+%28a-b%29%3D%5Cfrac%7Ba%5E2-b%5E2%7D%7Ba%2Bb%7D)
stosuję ten wzór do licznika i mianownika:
d)![\lim_{x \to0}{\frac{\sqrt{x^2+1}-1}{\sqrt{x^2+25}-5}}=\lim_{x\to0}{\frac{x^2+1-1}{\sqrt{x^2+1}+1}\frac{\sqrt{x^2+25}+5}{x^2+25-25}}=\lim_{x\to0}{\frac{\sqrt{x^2+25}+5}{\sqrt{x^2+1}+1}}=5 \lim_{x \to0}{\frac{\sqrt{x^2+1}-1}{\sqrt{x^2+25}-5}}=\lim_{x\to0}{\frac{x^2+1-1}{\sqrt{x^2+1}+1}\frac{\sqrt{x^2+25}+5}{x^2+25-25}}=\lim_{x\to0}{\frac{\sqrt{x^2+25}+5}{\sqrt{x^2+1}+1}}=5](https://tex.z-dn.net/?f=%5Clim_%7Bx+%5Cto0%7D%7B%5Cfrac%7B%5Csqrt%7Bx%5E2%2B1%7D-1%7D%7B%5Csqrt%7Bx%5E2%2B25%7D-5%7D%7D%3D%5Clim_%7Bx%5Cto0%7D%7B%5Cfrac%7Bx%5E2%2B1-1%7D%7B%5Csqrt%7Bx%5E2%2B1%7D%2B1%7D%5Cfrac%7B%5Csqrt%7Bx%5E2%2B25%7D%2B5%7D%7Bx%5E2%2B25-25%7D%7D%3D%5Clim_%7Bx%5Cto0%7D%7B%5Cfrac%7B%5Csqrt%7Bx%5E2%2B25%7D%2B5%7D%7B%5Csqrt%7Bx%5E2%2B1%7D%2B1%7D%7D%3D5)
e)![\lim_{x\to0}{\frac{4x}{3\sin{2x}}}=\lim_{x\to0}{\frac{2x}{3\sin x\cos x}} \lim_{x\to0}{\frac{4x}{3\sin{2x}}}=\lim_{x\to0}{\frac{2x}{3\sin x\cos x}}](https://tex.z-dn.net/?f=%5Clim_%7Bx%5Cto0%7D%7B%5Cfrac%7B4x%7D%7B3%5Csin%7B2x%7D%7D%7D%3D%5Clim_%7Bx%5Cto0%7D%7B%5Cfrac%7B2x%7D%7B3%5Csin+x%5Ccos+x%7D%7D)
wykorzystam własność (dla x<<1):
którą udowanośnić można z własności trójkąta
ciągi ograniczające są zbieżne do 1 dla x->0 więc i badany ciąg jest do 1 zbieżny
f)![\lim_{x\to\infty}\frac{\sin x}{x}\\ \frac{-1}{x}\leq\frac{\sin x}{x}\leq\frac{1}{x} \lim_{x\to\infty}\frac{\sin x}{x}\\ \frac{-1}{x}\leq\frac{\sin x}{x}\leq\frac{1}{x}](https://tex.z-dn.net/?f=%5Clim_%7Bx%5Cto%5Cinfty%7D%5Cfrac%7B%5Csin+x%7D%7Bx%7D%5C%5C+%5Cfrac%7B-1%7D%7Bx%7D%5Cleq%5Cfrac%7B%5Csin+x%7D%7Bx%7D%5Cleq%5Cfrac%7B1%7D%7Bx%7D)
na podstawie tw, o trzech ciągach; ciągi ograniczające sązbieżne do 0 więc i badany ciąg jest do 0 zbieżny:
g)![\lim_{x\to\frac{\pi}{2}}{\frac{\sin x}{x}}=\frac{1}{0.5\pi}=\frac{2}{\pi} \lim_{x\to\frac{\pi}{2}}{\frac{\sin x}{x}}=\frac{1}{0.5\pi}=\frac{2}{\pi}](https://tex.z-dn.net/?f=%5Clim_%7Bx%5Cto%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%7B%5Cfrac%7B%5Csin+x%7D%7Bx%7D%7D%3D%5Cfrac%7B1%7D%7B0.5%5Cpi%7D%3D%5Cfrac%7B2%7D%7B%5Cpi%7D)
h)![\lim_{x\to\frac{\pi}{2}}{\frac{\cos x}{x-0.5\pi}}=\lim_{x\to0.5\pi}{\frac{\sin{(0.5\pi-x)}}{x-0.5\pi}}\\ 0.5\pi-x=a\\ \lim_{a\to0}{\frac{\sin a}{-a}}=-1 \lim_{x\to\frac{\pi}{2}}{\frac{\cos x}{x-0.5\pi}}=\lim_{x\to0.5\pi}{\frac{\sin{(0.5\pi-x)}}{x-0.5\pi}}\\ 0.5\pi-x=a\\ \lim_{a\to0}{\frac{\sin a}{-a}}=-1](https://tex.z-dn.net/?f=%5Clim_%7Bx%5Cto%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%7B%5Cfrac%7B%5Ccos+x%7D%7Bx-0.5%5Cpi%7D%7D%3D%5Clim_%7Bx%5Cto0.5%5Cpi%7D%7B%5Cfrac%7B%5Csin%7B%280.5%5Cpi-x%29%7D%7D%7Bx-0.5%5Cpi%7D%7D%5C%5C+0.5%5Cpi-x%3Da%5C%5C+%5Clim_%7Ba%5Cto0%7D%7B%5Cfrac%7B%5Csin+a%7D%7B-a%7D%7D%3D-1)
i)![\lim_{x \to \ 8}{\frac{8-x}{sin{\frac{\pi}{8}x}}}\\ 8-x=a\\ x=8-a\\ \frac{\pi}{8}x=\pi-\frac{\pi}{8}a\\ \sin{(\pi-\alpha)}=\sin{\alpha}\\ \lim_{a\to0}{\frac{a}{\sin{\frac{\pi}{8}a}}}\\ \frac{\pi}{8}a=b\\ \lim_{b\to0}{\frac{8}{\pi}\frac{b}{\sin b}}=\frac{8}{\pi} \lim_{x \to \ 8}{\frac{8-x}{sin{\frac{\pi}{8}x}}}\\ 8-x=a\\ x=8-a\\ \frac{\pi}{8}x=\pi-\frac{\pi}{8}a\\ \sin{(\pi-\alpha)}=\sin{\alpha}\\ \lim_{a\to0}{\frac{a}{\sin{\frac{\pi}{8}a}}}\\ \frac{\pi}{8}a=b\\ \lim_{b\to0}{\frac{8}{\pi}\frac{b}{\sin b}}=\frac{8}{\pi}](https://tex.z-dn.net/?f=%5Clim_%7Bx+%5Cto+%5C+8%7D%7B%5Cfrac%7B8-x%7D%7Bsin%7B%5Cfrac%7B%5Cpi%7D%7B8%7Dx%7D%7D%7D%5C%5C+8-x%3Da%5C%5C+x%3D8-a%5C%5C+%5Cfrac%7B%5Cpi%7D%7B8%7Dx%3D%5Cpi-%5Cfrac%7B%5Cpi%7D%7B8%7Da%5C%5C+%5Csin%7B%28%5Cpi-%5Calpha%29%7D%3D%5Csin%7B%5Calpha%7D%5C%5C+%5Clim_%7Ba%5Cto0%7D%7B%5Cfrac%7Ba%7D%7B%5Csin%7B%5Cfrac%7B%5Cpi%7D%7B8%7Da%7D%7D%7D%5C%5C+%5Cfrac%7B%5Cpi%7D%7B8%7Da%3Db%5C%5C+%5Clim_%7Bb%5Cto0%7D%7B%5Cfrac%7B8%7D%7B%5Cpi%7D%5Cfrac%7Bb%7D%7B%5Csin+b%7D%7D%3D%5Cfrac%7B8%7D%7B%5Cpi%7D)
j)![\lim_{x \to\frac{\pi}{4}} \frac{cos x-cos{\frac{\pi}{4}}}{sin x- sin{\frac{pi}{4}}}}\\ \cos x-\cos{\frac{\pi}{4}}=2\sin{\frac{x+0.25\pi}{2}}\cdot\sin{\frac{x-0.25\pi}{2}}\\ \sin x-\sin{\frac{\pi}{4}}=2\cos{\frac{x+0.25\pi}{2}}\cdot\sin{\frac{x-0.25\pi}{2}}\\ \lim_{x\to0.25\pi}{\frac{\sin{\frac{x+0.25\pi}{2}}}{\cos{\frac{x+0.25\pi}{2}}}}=\frac{\sin{0.25\pi}}{\cos{0.25\pi}}=1 \lim_{x \to\frac{\pi}{4}} \frac{cos x-cos{\frac{\pi}{4}}}{sin x- sin{\frac{pi}{4}}}}\\ \cos x-\cos{\frac{\pi}{4}}=2\sin{\frac{x+0.25\pi}{2}}\cdot\sin{\frac{x-0.25\pi}{2}}\\ \sin x-\sin{\frac{\pi}{4}}=2\cos{\frac{x+0.25\pi}{2}}\cdot\sin{\frac{x-0.25\pi}{2}}\\ \lim_{x\to0.25\pi}{\frac{\sin{\frac{x+0.25\pi}{2}}}{\cos{\frac{x+0.25\pi}{2}}}}=\frac{\sin{0.25\pi}}{\cos{0.25\pi}}=1](https://tex.z-dn.net/?f=%5Clim_%7Bx+%5Cto%5Cfrac%7B%5Cpi%7D%7B4%7D%7D+%5Cfrac%7Bcos+x-cos%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%7D%7D%7Bsin+x-+sin%7B%5Cfrac%7Bpi%7D%7B4%7D%7D%7D%7D%5C%5C+%5Ccos+x-%5Ccos%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%7D%3D2%5Csin%7B%5Cfrac%7Bx%2B0.25%5Cpi%7D%7B2%7D%7D%5Ccdot%5Csin%7B%5Cfrac%7Bx-0.25%5Cpi%7D%7B2%7D%7D%5C%5C+%5Csin+x-%5Csin%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%7D%3D2%5Ccos%7B%5Cfrac%7Bx%2B0.25%5Cpi%7D%7B2%7D%7D%5Ccdot%5Csin%7B%5Cfrac%7Bx-0.25%5Cpi%7D%7B2%7D%7D%5C%5C+%5Clim_%7Bx%5Cto0.25%5Cpi%7D%7B%5Cfrac%7B%5Csin%7B%5Cfrac%7Bx%2B0.25%5Cpi%7D%7B2%7D%7D%7D%7B%5Ccos%7B%5Cfrac%7Bx%2B0.25%5Cpi%7D%7B2%7D%7D%7D%7D%3D%5Cfrac%7B%5Csin%7B0.25%5Cpi%7D%7D%7B%5Ccos%7B0.25%5Cpi%7D%7D%3D1)
k)![\lim_{x\to 0}{\frac{\arctan x}{x}}\\ \sin a\leq a\leq\tan a\\ a=\arctan x\\ \sin{\arctan x}\leq a\leq x\\ x=\tan a\\ x^2=\frac{\sin^2 a}{1-\sin^2 a}\\ \sin^2a=x^2-x^2\sin^2a\\ \sin a=\frac{x}{\sqrt{1+x^2}}\\ \sin{\arctan a}=\frac{x}{\sqrt{1+x^2}}\\ \frac{x}{\sqrt{1+x^2}}\leq \arctan x\leq x\\ \frac{1}{\sqrt{1+x^2}}\leq\frac{\arctan x}{x}\leq 1 \lim_{x\to 0}{\frac{\arctan x}{x}}\\ \sin a\leq a\leq\tan a\\ a=\arctan x\\ \sin{\arctan x}\leq a\leq x\\ x=\tan a\\ x^2=\frac{\sin^2 a}{1-\sin^2 a}\\ \sin^2a=x^2-x^2\sin^2a\\ \sin a=\frac{x}{\sqrt{1+x^2}}\\ \sin{\arctan a}=\frac{x}{\sqrt{1+x^2}}\\ \frac{x}{\sqrt{1+x^2}}\leq \arctan x\leq x\\ \frac{1}{\sqrt{1+x^2}}\leq\frac{\arctan x}{x}\leq 1](https://tex.z-dn.net/?f=%5Clim_%7Bx%5Cto+0%7D%7B%5Cfrac%7B%5Carctan+x%7D%7Bx%7D%7D%5C%5C+%5Csin+a%5Cleq+a%5Cleq%5Ctan+a%5C%5C+a%3D%5Carctan+x%5C%5C+%5Csin%7B%5Carctan+x%7D%5Cleq+a%5Cleq+x%5C%5C+x%3D%5Ctan+a%5C%5C+x%5E2%3D%5Cfrac%7B%5Csin%5E2+a%7D%7B1-%5Csin%5E2+a%7D%5C%5C+%5Csin%5E2a%3Dx%5E2-x%5E2%5Csin%5E2a%5C%5C+%5Csin+a%3D%5Cfrac%7Bx%7D%7B%5Csqrt%7B1%2Bx%5E2%7D%7D%5C%5C+%5Csin%7B%5Carctan+a%7D%3D%5Cfrac%7Bx%7D%7B%5Csqrt%7B1%2Bx%5E2%7D%7D%5C%5C+%5Cfrac%7Bx%7D%7B%5Csqrt%7B1%2Bx%5E2%7D%7D%5Cleq+%5Carctan+x%5Cleq+x%5C%5C+%5Cfrac%7B1%7D%7B%5Csqrt%7B1%2Bx%5E2%7D%7D%5Cleq%5Cfrac%7B%5Carctan+x%7D%7Bx%7D%5Cleq+1)
z tw. o trzech ciągach mamy, że szukany ciąg jest zbieżny do 1
wygląda to doscyć mrocznie, ale idea jest taka, że znów korzystam z ograniczenia dowolnej liczby (bliskiej zera) przez jej sinus od dołu i tangens od góry, z tym, że sinus z arctan można zapisać jako taki śmieszne wyrażenia z pierwiastkiem
l)![\lim_{x\to0.5}{\frac{\arcsin{(1-2x)}}{(2x-1)(2x+1)}}\\ 1-2x=a\\ 2x=1-a\\ \lim_{a\to0}{\frac{\arcsin a}{a(2-a)}} \lim_{x\to0.5}{\frac{\arcsin{(1-2x)}}{(2x-1)(2x+1)}}\\ 1-2x=a\\ 2x=1-a\\ \lim_{a\to0}{\frac{\arcsin a}{a(2-a)}}](https://tex.z-dn.net/?f=%5Clim_%7Bx%5Cto0.5%7D%7B%5Cfrac%7B%5Carcsin%7B%281-2x%29%7D%7D%7B%282x-1%29%282x%2B1%29%7D%7D%5C%5C+1-2x%3Da%5C%5C+2x%3D1-a%5C%5C+%5Clim_%7Ba%5Cto0%7D%7B%5Cfrac%7B%5Carcsin+a%7D%7Ba%282-a%29%7D%7D)
znów robię tan sam trick, co w przykładzie powyżej:
z twierdzenia o trzech ciągach mamy, że ten arcsin(a)/a=1 w granicy, więc
pozdrawiam
---------------
"non enim possumus quae vidimus et audivimus non loqui"