Błagam o pomoc:
Obliczyć pochodne:
a)
b)
c)
d)
e)
f)
p ' (x) = 1*e^(1/( x-1)) + ( x -1)*e^(1/(x-1)) * [ -1/(x -1)^2] =
= e^( 1/(x-1)) - [ 1 /( x -1) ]* e^( 1/(x-1)) =[ 1 - 1/( x -1)]* e^( 1/(x-1))
==============================================================
q '(x) = [ 0* p(x^2 - 1)] - 1*(( 1*2x)/ 2p(x^2 - 1))]/ p( x^2 - 1)^2 =
= -x /[(x^2 -1)*p(x^2 - 1)]
==========================
f '(x) = 1*e^(-3x) + x * e^(-3x) * (-3) = e^(-3x) - 3x * e^)=3x) = (1 -3x)* e^(-3x)
====================================================================
g '(x) = [ 0* x ln x - 1 *(1*ln x + x *(1/x)) ] / ( x ln x)^2 =
= - ( ln x + 1 ) /( x ln x )^2
==============================
f '(x) = 1* p( 1 - x^2) + x* [ 1/ ( 2 p( 1 - x^2))]* ( - 2x) =
= p( 1 - x^2) - [x^2/ p(1 - x^2) ]
================================
g ' ( x) = 1 - 1 /(x^2)
=======================================================
Korzystaliśmy z wzorów:
[ f(x)* g(x)] ' = f '(x)* g(x) + f(x) * g ' (x) - pochodna iloczynu funkcji
[ f(x) / g(x) ] ' = [ f '(x)*g(x) - f(x)*g' (x) ]/ ( g(x)^2 - pochodna ilorazu funkcji
[ f(x) + g(x) ]' = f '(x) = g' (x) - pochodna sumy funkcji
oraz na pochodną funkcji złożonej
y ' = g'( f(x))* f' (x)
============================
i inne podstawowe wzory na obliczanie pochodnych funkcji jednej zmiennej
rzeczywistej
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
a)
p ' (x) = 1*e^(1/( x-1)) + ( x -1)*e^(1/(x-1)) * [ -1/(x -1)^2] =
= e^( 1/(x-1)) - [ 1 /( x -1) ]* e^( 1/(x-1)) =[ 1 - 1/( x -1)]* e^( 1/(x-1))
==============================================================
b)
q '(x) = [ 0* p(x^2 - 1)] - 1*(( 1*2x)/ 2p(x^2 - 1))]/ p( x^2 - 1)^2 =
= -x /[(x^2 -1)*p(x^2 - 1)]
==========================
c)
f '(x) = 1*e^(-3x) + x * e^(-3x) * (-3) = e^(-3x) - 3x * e^)=3x) = (1 -3x)* e^(-3x)
====================================================================
d)
g '(x) = [ 0* x ln x - 1 *(1*ln x + x *(1/x)) ] / ( x ln x)^2 =
= - ( ln x + 1 ) /( x ln x )^2
==============================
e)
f '(x) = 1* p( 1 - x^2) + x* [ 1/ ( 2 p( 1 - x^2))]* ( - 2x) =
= p( 1 - x^2) - [x^2/ p(1 - x^2) ]
================================
f)
g ' ( x) = 1 - 1 /(x^2)
=======================================================
Korzystaliśmy z wzorów:
[ f(x)* g(x)] ' = f '(x)* g(x) + f(x) * g ' (x) - pochodna iloczynu funkcji
[ f(x) / g(x) ] ' = [ f '(x)*g(x) - f(x)*g' (x) ]/ ( g(x)^2 - pochodna ilorazu funkcji
[ f(x) + g(x) ]' = f '(x) = g' (x) - pochodna sumy funkcji
oraz na pochodną funkcji złożonej
y ' = g'( f(x))* f' (x)
============================
i inne podstawowe wzory na obliczanie pochodnych funkcji jednej zmiennej
rzeczywistej