Oblicz całkę ułamków prostych
∫ (dx) / ( (4-3x)²)
∫[dx/(4 -3x)²] =
podstawienie 4 - 3x = t
zatem -3dx = dt --> dx = dt/(-3)
mamy więc
∫[dx/(4 -3x)²] = (-1/3)∫ dt/t² = (-1/3) ∫t⁻² dt = (-1/3)(-1/t) + c = 1/(3t) + c
czyli
∫[dx/(4 -3x)²] = 1/[ 3*(4 - 3x)] + C
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
∫[dx/(4 -3x)²] =
podstawienie 4 - 3x = t
zatem -3dx = dt --> dx = dt/(-3)
mamy więc
∫[dx/(4 -3x)²] = (-1/3)∫ dt/t² = (-1/3) ∫t⁻² dt = (-1/3)(-1/t) + c = 1/(3t) + c
czyli
∫[dx/(4 -3x)²] = 1/[ 3*(4 - 3x)] + C