Oblicz całkę nieoznaczoną, stosując odpowiednie podstawienie
∫(dx) / ( 4 (x^2) - 20x +34 )
∫(dx/4x² -20x +34)
Δ = 400 -4*4*34 = 400 - 544 = - 144
p = 20/8 = 5/2
q = 144/8 = 9
zatem
4x² - 20x + 34 = 4*[(x +5/2)² +9]
czyli
I = ∫(dx/4x² - 20x +34) = ∫[dx/(4*[(x +5/2)² +9] =
=(1/4)∫ (dx/[(x + 5/2)² + 9/4])
Podstawienie
x + 5/2 = (3/2)t ----> t = (2/3)x +5/3
dx = (3/2) dt
zatem I = (1/4)∫(3/2)dt/( (9/4)t² +9/4] =
= (1/4)*(3/2)*(4/9) ∫ dt/(t² + 1) = (1/6)∫ dt/(t² +1) =
= (1/6) *arctg t + c' = (1/6) *arctg[(2/3)x +(5/3)] + C
================================================
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
∫(dx/4x² -20x +34)
Δ = 400 -4*4*34 = 400 - 544 = - 144
p = 20/8 = 5/2
q = 144/8 = 9
zatem
4x² - 20x + 34 = 4*[(x +5/2)² +9]
czyli
I = ∫(dx/4x² - 20x +34) = ∫[dx/(4*[(x +5/2)² +9] =
=(1/4)∫ (dx/[(x + 5/2)² + 9/4])
Podstawienie
x + 5/2 = (3/2)t ----> t = (2/3)x +5/3
dx = (3/2) dt
zatem I = (1/4)∫(3/2)dt/( (9/4)t² +9/4] =
= (1/4)*(3/2)*(4/9) ∫ dt/(t² + 1) = (1/6)∫ dt/(t² +1) =
= (1/6) *arctg t + c' = (1/6) *arctg[(2/3)x +(5/3)] + C
================================================