Oblicz podaną całkę nieoznaczoną
∫ ( ( 1 ) / (3^x) ) dx
∫dx/[3^x] = ∫3^(-x) dx
stosujemy podstawienie
-x = y ---> -dx = dy --> dx = - dy
zatem
∫3^(-x) dx = - ∫3^y dy = -[3^y / ln 3] = - [3 ^(-x) / ln 3] =
= - [ 1/(3^x * ln 3) ] = -1 /( 3^x * ln 3)
===================================================
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
∫dx/[3^x] = ∫3^(-x) dx
stosujemy podstawienie
-x = y ---> -dx = dy --> dx = - dy
zatem
∫3^(-x) dx = - ∫3^y dy = -[3^y / ln 3] = - [3 ^(-x) / ln 3] =
= - [ 1/(3^x * ln 3) ] = -1 /( 3^x * ln 3)
===================================================