Znaleźć pierwiastki wielomianów z załącznika.
x⁴-6x³+4x²+6x-5≥0
W(x)=x⁴-6x³+4x²+6x-5
W(1)=1-6+4+6-5=0
(x⁴-6x³+4x²+6x-5):(x-1)=x³-5x²-x+5
W(x)=(x³-5x²-x+5)(x-1)
Q(x)=x³-5x²-x+5
Q(1)=1-5-1+5=0
(x³-5x²-x+5):(x-1)=x²-4x-5
W(x)=(x²-4x-5)(x-1)²
Δ=16-4*1*(-5)=16+20=36
x₁=4+6/2=10/2=5
x₂=4-6/2=-2/2=-1
W(x)=(x-5)(x+1)(x-1)²
(x-5)(x+1)(x-1)²≥0
x=5 v x=-1 v x=1 pierwiastek podwojny
x∈(-∞,-1]u{1}u[5,∞)
x³-2x²-9x-2>0
W(x)=x³-2x²-9x-2
W(-2)=-8-8+18-2=-18+18=0
(x³-2x²-9x-2)(x+2)=x²-4x-1
W(x)=(x²-4x-1)(x+2)
Δ=16-4*1*(-1)=16+4=20
√Δ=√4*5=2√5
x₁=4+2√5/2=2(2+√5)/2=2+√5
x₂=2-√5
W(x)=(x+2)(x+2-√5)(x+2+√5)
(x+2)(x+2-√5)(x-2+√5)>0
x∈(-2,2-√5)u(2+√5,∞)
-2x³+9x²+2x-3≤0
W(x)=-2x³+9x²+2x-3
Korzystam z twierdzenia o pierwiastkach wymiernych wielomianu
W(½)=0
(-2x³+9x²+2x-3):(x-½)=-2x²+8x+6
-2x²+8x+6
Δ=64-4*(-2)*6=64-48=16
x₁=-8+4/-4=-4/-4=1
x₂=-8-4/-4=-12/-4=3
W(x)=(x-1)(x-3)(x-½)
-(x-1)(x-3)(x-½)≤0
x=1 x=3 x=½
x∈[½,1]u[3,∞)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
x⁴-6x³+4x²+6x-5≥0
W(x)=x⁴-6x³+4x²+6x-5
W(1)=1-6+4+6-5=0
(x⁴-6x³+4x²+6x-5):(x-1)=x³-5x²-x+5
W(x)=(x³-5x²-x+5)(x-1)
Q(x)=x³-5x²-x+5
Q(1)=1-5-1+5=0
(x³-5x²-x+5):(x-1)=x²-4x-5
W(x)=(x²-4x-5)(x-1)²
Δ=16-4*1*(-5)=16+20=36
x₁=4+6/2=10/2=5
x₂=4-6/2=-2/2=-1
W(x)=(x-5)(x+1)(x-1)²
(x-5)(x+1)(x-1)²≥0
x=5 v x=-1 v x=1 pierwiastek podwojny
x∈(-∞,-1]u{1}u[5,∞)
x³-2x²-9x-2>0
W(x)=x³-2x²-9x-2
W(-2)=-8-8+18-2=-18+18=0
(x³-2x²-9x-2)(x+2)=x²-4x-1
W(x)=(x²-4x-1)(x+2)
Δ=16-4*1*(-1)=16+4=20
√Δ=√4*5=2√5
x₁=4+2√5/2=2(2+√5)/2=2+√5
x₂=2-√5
W(x)=(x+2)(x+2-√5)(x+2+√5)
(x+2)(x+2-√5)(x-2+√5)>0
x∈(-2,2-√5)u(2+√5,∞)
-2x³+9x²+2x-3≤0
W(x)=-2x³+9x²+2x-3
Korzystam z twierdzenia o pierwiastkach wymiernych wielomianu
W(½)=0
(-2x³+9x²+2x-3):(x-½)=-2x²+8x+6
-2x²+8x+6
Δ=64-4*(-2)*6=64-48=16
x₁=-8+4/-4=-4/-4=1
x₂=-8-4/-4=-12/-4=3
W(x)=(x-1)(x-3)(x-½)
-(x-1)(x-3)(x-½)≤0
x=1 x=3 x=½
x∈[½,1]u[3,∞)