zadania w załączniku.
na czwartek
pisać rozwiązania
²zad.36
a) H = 6
r = 5
V = ?
V = ⅓*π*r²*H
V = ⅓*π*5²*6
V = ⅓*π*25*6
V = 50π [j³]
b)
d = 4
r = ½d = 2
l = 6
H - wysokość
1. Obliczam wysokość H stozka
H² + r² = l²
H² = l² - r²
H² = 6² -2²
H² = 32
H = √32 = √16*√2
H = 4√2
2. Obliczam objetość stożka
V = ⅓*π*2²*4√2
V = ⅓*π*4*2√2
V = (8/3)*√2*π [j³]
c)
H =2
l = 7
r - promień podstawy
1. Obliczam promien podstawy
r² = l² -H²
r² = 7² - 2²
r² = 49-4
r² = 45
r = √45 = √9*√5 = 3√5
r = 3√5
2. Obczam objetość stożka
V =
V = ⅓*π*(3√5)²*2
V = ⅓*π*9*5*2
V = 30π [j³]
d)
d = 8
r = ½d = 4
α = 60°
H - wysokość stożka
l - tworzaca stozka
1. Obliczam wysokość H stożka
H : r = tg α
H = r*tg 60°
H = 4*√3
2. Obliczam obętość stozka
V = ⅓*π*4²*4√3
V = ⅓*π*16*4√3
V = (64/3)*π [j³]
e)
H = 5
α = 45°
l - tworzaca stożka
1. Obliczam promien podstawy r
r : H = ctg α
r : H = ctg 45°
r : H = 1
r : 5 = 1
2. Obliczam Objetość stożka
V = ⅓*π*5²*5
V = ⅓*π*25*5
V = (125/3)*π [j³]
f)
α = 120°
r - promien podstawy stożka
H : l = cos (½α)
H : l = cos 60°
H = l*cos 60°
H = 6*½
H = 3
2. Obliczam promien r podstawy stożka
r : l = sin (½α)
r = l*sin 60°
r = 6*½√3
r = 3√3
3. Obliczam objętość stożka
V = ⅓*π*(3√3)²*3
V = ⅓*π*9*3*3
V = 27π [j³]
-------------------------
Zad.39
a)
l = 13
r= 5
V = ? - objętość stożka
H² +r² = l²
H² = l² -r²
H² = 13² - 5²
H²= 169 -25 =144
H = √144
H = 12
V = ⅓*π*5²*12
V = ⅓*π**25*12
V = 100*π [j³]
H = 9
l = 15
1. Obliczam promień r podstawy
r² = 15² - 9²
r² = 225 - 81 = 144
r = √144
r =12
V = ⅓*π*12²*9
V = ⅓*π*144*9
V = 432*π [j³]
H² = 7² -5²
H² = 49 -25 = 24
H = √24 = √4*√6
H = 2√6
V = ⅓*π*5²*2√6
V = ⅓*π*25*2√6
V = (50/3)*√6*π [j³]
---------------------------------
r = 3
P = ? - pole kuli
V = ? - objętość kuli
1. Obliczam pole kuli
P = 4*π*r²
P = 4*π*3²
P = 4*π*9
P = 36*π [j²]
2. Obliczam objetość kuli
V = (4/3)*π*r³
V = (4/3)*π*3³
V = (4/3)*π*27
V = 36*π [j³]
r = 2√3
P = 4*π*(3√3)²
P= 4*π*9*3
P = 108*π [j²]
2. Obliczam objętość kuli
V = (4/3)*π*(2√3)³
V = (4/3)*π*8*3*√3
V = 32*√3*π [j³]
D = 10
r = ½D = 5
P = 4*π*5²
P = 4*π*25
P = 100*π [j²]
V = (4/3)*π*5³
V = (4/3)*π*125
V = (100/3)*π [j³]
D = 4√2
r = ½D= 2√2
P = 4*π*(2√2)²
P = 4*π*4*2
P = 32*π [j²]
V = (4/3)*π*(2√2)³
V = (4/3)*π*8*2√2
V = (64/3)*√2*π [j³]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
²zad.36
a) H = 6
r = 5
V = ?
V = ⅓*π*r²*H
V = ⅓*π*5²*6
V = ⅓*π*25*6
V = 50π [j³]
b)
d = 4
r = ½d = 2
l = 6
H - wysokość
V = ?
1. Obliczam wysokość H stozka
H² + r² = l²
H² = l² - r²
H² = 6² -2²
H² = 32
H = √32 = √16*√2
H = 4√2
2. Obliczam objetość stożka
V = ⅓*π*r²*H
V = ⅓*π*2²*4√2
V = ⅓*π*4*2√2
V = (8/3)*√2*π [j³]
c)
H =2
l = 7
r - promień podstawy
V = ?
1. Obliczam promien podstawy
H² + r² = l²
r² = l² -H²
r² = 7² - 2²
r² = 49-4
r² = 45
r = √45 = √9*√5 = 3√5
r = 3√5
2. Obczam objetość stożka
V =
V = ⅓*π*r²*H
V = ⅓*π*(3√5)²*2
V = ⅓*π*9*5*2
V = 30π [j³]
d)
d = 8
r = ½d = 4
α = 60°
H - wysokość stożka
l - tworzaca stozka
V = ?
1. Obliczam wysokość H stożka
H : r = tg α
H = r*tg 60°
H = 4*√3
2. Obliczam obętość stozka
V = ⅓*π*r²*H
V = ⅓*π*4²*4√3
V = ⅓*π*16*4√3
V = (64/3)*π [j³]
e)
H = 5
α = 45°
r - promień podstawy
l - tworzaca stożka
V = ?
1. Obliczam promien podstawy r
r : H = ctg α
r : H = ctg 45°
r : H = 1
r : 5 = 1
r = 5
2. Obliczam Objetość stożka
V = ⅓*π*r²*H
V = ⅓*π*5²*5
V = ⅓*π*25*5
V = (125/3)*π [j³]
f)
α = 120°
l = 6
H - wysokość stożka
r - promien podstawy stożka
V = ?
1. Obliczam wysokość H stożka
H : l = cos (½α)
H : l = cos 60°
H = l*cos 60°
H = 6*½
H = 3
2. Obliczam promien r podstawy stożka
r : l = sin (½α)
r = l*sin 60°
r = 6*½√3
r = 3√3
3. Obliczam objętość stożka
V = ⅓*π*r²*H
V = ⅓*π*(3√3)²*3
V = ⅓*π*9*3*3
V = 27π [j³]
-------------------------
Zad.39
a)
l = 13
r= 5
H - wysokość stożka
V = ? - objętość stożka
1. Obliczam wysokość H stożka
H² +r² = l²
H² = l² -r²
H² = 13² - 5²
H²= 169 -25 =144
H = √144
H = 12
2. Obliczam objetość stożka
V = ⅓*π*r²*H
V = ⅓*π*5²*12
V = ⅓*π**25*12
V = 100*π [j³]
b)
H = 9
l = 15
r - promień podstawy
V = ?
1. Obliczam promień r podstawy
H² +r² = l²
r² = l² -H²
r² = 15² - 9²
r² = 225 - 81 = 144
r = √144
r =12
2. Obliczam objetość stożka
V = ⅓*π*r²*H
V = ⅓*π*12²*9
V = ⅓*π*144*9
V = 432*π [j³]
c)
r = 5
l = 7
H - wysokość stożka
V = ?
1. Obliczam wysokość H stożka
H² +r² = l²
H² = l² -r²
H² = 7² -5²
H² = 49 -25 = 24
H = √24 = √4*√6
H = 2√6
2. Obliczam objetość stożka
V = ⅓*π*r²*H
V = ⅓*π*5²*2√6
V = ⅓*π*25*2√6
V = (50/3)*√6*π [j³]
---------------------------------
Zad.39
a)
r = 3
P = ? - pole kuli
V = ? - objętość kuli
1. Obliczam pole kuli
P = 4*π*r²
P = 4*π*3²
P = 4*π*9
P = 36*π [j²]
2. Obliczam objetość kuli
V = (4/3)*π*r³
V = (4/3)*π*3³
V = (4/3)*π*27
V = 36*π [j³]
b)
r = 2√3
P = ? - pole kuli
V = ? - objętość kuli
1. Obliczam pole kuli
P = 4*π*r²
P = 4*π*(3√3)²
P= 4*π*9*3
P = 108*π [j²]
2. Obliczam objętość kuli
V = (4/3)*π*r³
V = (4/3)*π*(2√3)³
V = (4/3)*π*8*3*√3
V = 32*√3*π [j³]
c)
D = 10
r = ½D = 5
P = ? - pole kuli
V = ? - objętość kuli
1. Obliczam pole kuli
P = 4*π*r²
P = 4*π*5²
P = 4*π*25
P = 100*π [j²]
2. Obliczam objetość kuli
V = (4/3)*π*r³
V = (4/3)*π*5³
V = (4/3)*π*125
V = (100/3)*π [j³]
d)
D = 4√2
r = ½D= 2√2
P = ? - pole kuli
V = ? - objętość kuli
1. Obliczam pole kuli
P = 4*π*r²
P = 4*π*(2√2)²
P = 4*π*4*2
P = 32*π [j²]
2. Obliczam objetość kuli
V = (4/3)*π*r³
V = (4/3)*π*(2√2)³
V = (4/3)*π*8*2√2
V = (64/3)*√2*π [j³]