Z działu nierówności wielomianowe: rozwiąż układ nierówności
{(x²+12x+35)(2x+1)(3-2x)≥0
{(x²-2x-8)(2x-1)≥0
(x²+12x+35)(2x+1)(3-2x)≥0
Δ=12²-4*1*35
Δ=144-140
Δ=4
√Δ=2
x₁=(-12-2)/(2*1)x₁=-14/2
x₁=-7
x₂=(-12+2)/(2*1)x₂=-10/2
x₂=-5
2x+1=0
2x=-1
x=-1/2
3-2x=0
-2x=-3
x=3/2
http://i56.tinypic.com/2wprlux.jpg
x∈<-7,-5>u<-1/2,3/2>
(x²-2x-8)(2x-1)≥0
x²-2x-8=0
x²+2x-4x-8=0
x(x+2)-4(x+2)=0
(x-4)(x+2)=0
x=4 ∨ x=-2
2x-1=0
2x=1
x=1/2
http://i54.tinypic.com/dcrhqa.jpg
x∈<-2,1/2>u<4,∞)
ostateczne rozwiązanie
x∈(<-7,-5>u<-1/2,3/2>)n(<-2,1/2>u<4,∞))
x∈<-1/2,1/2>
http://i54.tinypic.com/8xj1uf.jpg
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
(x²+12x+35)(2x+1)(3-2x)≥0
Δ=12²-4*1*35
Δ=144-140
Δ=4
√Δ=2
x₁=(-12-2)/(2*1)
x₁=-14/2
x₁=-7
x₂=(-12+2)/(2*1)
x₂=-10/2
x₂=-5
2x+1=0
2x=-1
x=-1/2
3-2x=0
-2x=-3
x=3/2
http://i56.tinypic.com/2wprlux.jpg
x∈<-7,-5>u<-1/2,3/2>
(x²-2x-8)(2x-1)≥0
x²-2x-8=0
x²+2x-4x-8=0
x(x+2)-4(x+2)=0
(x-4)(x+2)=0
x=4 ∨ x=-2
2x-1=0
2x=1
x=1/2
http://i54.tinypic.com/dcrhqa.jpg
x∈<-2,1/2>u<4,∞)
ostateczne rozwiązanie
x∈(<-7,-5>u<-1/2,3/2>)n(<-2,1/2>u<4,∞))
x∈<-1/2,1/2>
http://i54.tinypic.com/8xj1uf.jpg