Wyznacz dla ciagu arytmetycznego (an):
liczbe n wyrazow, gdy Sn= 204, r= 6, an= 49
roznice r, gdy Sn= 518, a1= 50, n= 14
sume a5 + a6 + ... + a20, gdy an = 5n - 3
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Sn = 204; r = 6; an = 49
-----------------------------
n = ?
mamy
an = a1 +(n -1)*r
a1 + (n-1)*6 = 49
a1 +6n - 6 = 49
a1 = 55 - 6n
===========
Sn = 0,5 *[a1 + an]*n
0,5*[55 - 6n + 49]*n = 204 / * 2
[104 - 6n]*n = 408
104n - 6n^2 = 408 / : 2
3 n^2 - 52 n + 204 = 0
------------------------------
delta = (-52)^2 - 4*3*204 = 2704 - 2448 = 256
p(delty) = 16
n = [ 52 - 16]/6 = 36/6 = 6
lub n = [ 52 + 16]/6 = 68/6 = 11 1/3 < --- odpada ( nie jest naturalna)
Odp. n = 6
==============================================================
Sn = 518; a1 = 50; n = 14
-------------------------------
r = ?
an = a1 +(n-1)*r
an = 50 + 13r
Sn = [a1 + an]/2
0,5 *[ 50 + 50 + 13 r]*14= 518 / *2
[100 + 13r]*14 = 1036
1400 + 182 r = 1036
182 r = 1036 - 1400 = - 364 / : 182
r = -2
========
=======================
an = 5n - 3
zatem
a1 = 5*1 - 3 = 2
a2 = 5*2 - 3 = 7
a3 = 5*3 - 3 = 12
a4 = 5*4 - 3 = 17
S4 = a1+a2 +a3 + a4 = 2+7+12+17 = 38
zatem r = 7 -2 = 12 - 7 = 5
a20 = a1 +19*r = 2 + 19*5 = 2 + 95 = 97
S20 = 0,5*[a1 +a20]*20 = 0,5*[2 +97]*20 = 10*99 = 990
zatem
a5 +a6 + a7 + .. + a19 + a20 = S20 - S4 = 990 - 38 = 952
Odp. 952
======================================================