" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
punkt (2,5) jest wierzchołkiem paraboli
a = -2
y = a( x - p) ² + q
y = -2(x -2) ² + 5
y = -2(x ²- 4x + 4) +5
y = -2x ²+ 8x - 8 + 5
y = -2x² + 8x - 3
odp.: b = 8, c = -3
f(x) = y = -2x²+bx+c
f(2) = 5 max.
a = -2
f(2) = -2*2² + b*2 + c
f(2) = - 8 + 2b + c = 5
- 8 + 2b + c = 5
2b + c = 5 + 8
2b + c = 13
jeżeli f(2) = 5 max , to sa to współrzedne wierzchołka paraboli
W = (xw, yw)
xw = -b : 2a = 2
yw = -Δ : 4a = 5
-b : 2a = 2
-Δ : 4a = 5
-b : 2*(-2) = 2
-Δ : 4*(-2) = 5
-b : (-4) = 2
-Δ : (-8 ) = 5
-b = -8
-Δ = - 40
b = 8
Δ = 40
Podstawiam b = 8 i obliczam c
2b + c = 13
2*8 + c = 13
16 + c = 13
c = 13 -16
c = -3
a = -2
b = 8
c = -3
Wzór szukanego trójmianu ma postać:
y = -2x² +8x -3