skróć ułamki i podaj konieczne założenia.... ;]
a) x^2+5x+6 dzielone na x^2-4
b) x^2-8x+15 dzielone na 2x^2-50
a)
x²+5x+6 / x²- 4
x² - 4 ≠ 0
(x - 2)(x + 2) ≠ 0
x ≠ 2 i x ≠ - 2
x ∈ R\{±2}
x²+5x+6 = 0
Δ = 25 - 24 = 1
√Δ = 1
x₁ = (- 5 - 1)/2 = - 6/2 = - 3
x₂ = (- 5 + 1)/2 = - 4/2 = - 2
(x + 3)(x + 2)/(x - 2)(x + 2)
x + 3/x + 2
b)
x²-8x+15 / 2x²-50
2x² - 50 ≠ 0
x² - 25 ≠ 0
x ≠ ±√25
x ≠ ± 5
x ∈ R \ {± 5}
x²-8x+15 = 0
Δ = 64 - 60 = 4
√Δ = √4 = 2
x₁ = (8 - 2)/2 = 6/2 = 3
x₂ = (8 + 2)/2 = 10/2 = 5
(x - 3)(x - 5)/2(x - 5)(x + 5) = (x - 3)/2(x + 5)
a) x²+5x+6=0
Δ=b²-4ac
Δ=25-24
Δ=1
√Δ=1
x 1=(-5-1)/2 x 1=-3
x 2=(-5+1)/2 x 2=-2
x²+5x+6=(x+2)(x+3)
[(x+2)(x+3)]/(x+2)(x-2)=(x+3)/(x-2)
zalozenia: x²-4≠o
(x+2)(x-2)≠0
x≠-2 i x≠2
=========================================================
b) x²-8x+15=0
Δ=64-60
Δ=4
√Δ=2
x 1=(8-2)/2 x 1=3
x 2= (8+2)/2 x 2=5
x²-8x+15=(x-3)(x-5)
2x²-50=2(x²-25)=2(x+5)(x-5)
[(x-3)(x-5)]/[2(x+5)(x-5)]=(x-3)/{2(x+5)]
zalozenia 2x²-50≠0
x²-25≠0
(x+5)(x-5)≠0
x≠-5 i x≠5
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a)
x²+5x+6 / x²- 4
x² - 4 ≠ 0
(x - 2)(x + 2) ≠ 0
x ≠ 2 i x ≠ - 2
x ∈ R\{±2}
x²+5x+6 = 0
Δ = 25 - 24 = 1
√Δ = 1
x₁ = (- 5 - 1)/2 = - 6/2 = - 3
x₂ = (- 5 + 1)/2 = - 4/2 = - 2
x²+5x+6 / x²- 4
(x + 3)(x + 2)/(x - 2)(x + 2)
x + 3/x + 2
b)
x²-8x+15 / 2x²-50
2x² - 50 ≠ 0
x² - 25 ≠ 0
x ≠ ±√25
x ≠ ± 5
x ∈ R \ {± 5}
x²-8x+15 = 0
Δ = 64 - 60 = 4
√Δ = √4 = 2
x₁ = (8 - 2)/2 = 6/2 = 3
x₂ = (8 + 2)/2 = 10/2 = 5
(x - 3)(x - 5)/2(x - 5)(x + 5) = (x - 3)/2(x + 5)
a) x²+5x+6=0
Δ=b²-4ac
Δ=25-24
Δ=1
√Δ=1
x 1=(-5-1)/2 x 1=-3
x 2=(-5+1)/2 x 2=-2
x²+5x+6=(x+2)(x+3)
[(x+2)(x+3)]/(x+2)(x-2)=(x+3)/(x-2)
zalozenia: x²-4≠o
(x+2)(x-2)≠0
x≠-2 i x≠2
=========================================================
b) x²-8x+15=0
Δ=64-60
Δ=4
√Δ=2
x 1=(8-2)/2 x 1=3
x 2= (8+2)/2 x 2=5
x²-8x+15=(x-3)(x-5)
2x²-50=2(x²-25)=2(x+5)(x-5)
[(x-3)(x-5)]/[2(x+5)(x-5)]=(x-3)/{2(x+5)]
zalozenia 2x²-50≠0
x²-25≠0
(x+5)(x-5)≠0
x≠-5 i x≠5