Rozwiązać:
2log₃(x-1) + log₃(x-5)² ≤ 2
Z: x-1 > 0 => x > 1
x-5 ≠ 0 => x ≠ 5
D: x > 1 i x ≠ 5
log₃(x-1)²+log₃(x-5)² ≤ log₃9
log₃[(x-1)²·(x-5)² ≤ log₃3²
(x-1)²·(x-5)² ≤ 9
(x-1)²·(x-5)²-9 ≤ 0
(x²-2x+1)(x²-10x+25)-9 ≤ 0
x⁴-10x³+25x²-2x³+20x³-50x+x²-10x+25-9 ≤ 0
x⁴-12x³+46x²-60x+16 ≤ 0
x⁴-4x³-8x³+32x²+14x²-56x-4x+16 = 0
x³(x-4)-8x²(x-4)+14x(x-4)-4(x-4) = 0
(x-4)(x³-8x²+14x-4) = 0
(x-4)(x³-2x²-6x²+12x+2x-4) = 0
(x-4)[(x²(x-2)-6x(x-2)+2(x-2)] = 0
(x-4)(x-2)(x²-6x+2) = 0
x²-6x+2 = 0
Δ = b²-4ac = 36-8 = 28
√Δ = √(4·7) = 2√7
x1 = (-b-√Δ)/2a = (6-2√7)/2 = 3-√7
x2 = (-b+√Δ)/2a = (6+2√7)/2 = 3+√7
x²-6x+2 = ((x-(3-√7))((x-(3+√7))
(x-4)*(x-2)*((x-(3-√7))*((x-(3+√7)) = 0
x = 4 v x = 2 v x = 3-√7 v x = 3+√7
x ∈ <3-√7; 2> u <4; 3+√7> oraz D
Odp. x ∈ (1; 2> u <4; 5) u (5; 3+√7>
2log3 (x - 1) + log3 (x - 5)² ≤ 2 D: x > 1 i x ≠ 5
log3 (x - 1)² + log3 (x - 5)² ≤ 2
log3 [ (x - 1)² * (x - 5)²] ≤ log3 3²
(x - 1)² * (x - 5)² ≤ 3²
(x² - 2x + 1)(x² - 10x + 25) - 9 ≤ 0
x⁴ - 10x³ + 25x² - 2x³ + 20x² - 50x + x² - 10x + 25 - 9 ≤ 0
x⁴ - 12x³ + 46x² - 60x + 16 ≤ 0
W(4) =4⁴ - 12 * 4³ + 46 * 4² - 60 * 4 + 16 = 256 - 768 + 736 - 240 + 16 = 0
x³ - 8x² + 14x - 4
-------------------------------
(x⁴ - 12x³ + 46x² - 60x + 16) : (x - 4)
-x⁴ + 4x³
------------------
- 8x³ + 46x²
8x³ - 32x²
-----------------
14x² - 60x
- 14x² + 56x
---------------
- 4x + 16
4x - 16
----------
= =
Q(x) = x³ - 8x² + 14x - 4
Q(2) = 8 - 32 + 28 - 4 = 36 - 36 = 0
x² - 6x + 2
------------------------
(x³ - 8x² + 14x - 4) : (x - 2)
-x³ + 2x²
----------------
- 6x² + 14x
6x² - 12x
------------
2x - 4
-2x + 4
--------
Δ = 36 - 8 = 28
√Δ = √28 = 2√7
x1 = (6 - 2√7) / 2 = 3 - √7
x2 = (6 + 2√7) / 2 = 3 + √7
(x - 4) (x³ - 8x² + 14x - 4) ≤ 0
(x - 4)(x - 2)(x² - 6x + 2) ≤ 0
(x - 4)(x - 2)(x - x1)(x - x2) ≤ 0
4 2 x1 x2
x ∈ <x1 ; 2> u < 4 ; x2 > i D
odp. x ∈ (1 ; 2> u < 4; 5) u (5, 3 + √7>
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
2log₃(x-1) + log₃(x-5)² ≤ 2
Z: x-1 > 0 => x > 1
x-5 ≠ 0 => x ≠ 5
D: x > 1 i x ≠ 5
log₃(x-1)²+log₃(x-5)² ≤ log₃9
log₃[(x-1)²·(x-5)² ≤ log₃3²
(x-1)²·(x-5)² ≤ 9
(x-1)²·(x-5)²-9 ≤ 0
(x²-2x+1)(x²-10x+25)-9 ≤ 0
x⁴-10x³+25x²-2x³+20x³-50x+x²-10x+25-9 ≤ 0
x⁴-12x³+46x²-60x+16 ≤ 0
x⁴-4x³-8x³+32x²+14x²-56x-4x+16 = 0
x³(x-4)-8x²(x-4)+14x(x-4)-4(x-4) = 0
(x-4)(x³-8x²+14x-4) = 0
(x-4)(x³-2x²-6x²+12x+2x-4) = 0
(x-4)[(x²(x-2)-6x(x-2)+2(x-2)] = 0
(x-4)(x-2)(x²-6x+2) = 0
x²-6x+2 = 0
Δ = b²-4ac = 36-8 = 28
√Δ = √(4·7) = 2√7
x1 = (-b-√Δ)/2a = (6-2√7)/2 = 3-√7
x2 = (-b+√Δ)/2a = (6+2√7)/2 = 3+√7
x²-6x+2 = ((x-(3-√7))((x-(3+√7))
(x-4)*(x-2)*((x-(3-√7))*((x-(3+√7)) = 0
x = 4 v x = 2 v x = 3-√7 v x = 3+√7
x ∈ <3-√7; 2> u <4; 3+√7> oraz D
Odp. x ∈ (1; 2> u <4; 5) u (5; 3+√7>
2log3 (x - 1) + log3 (x - 5)² ≤ 2 D: x > 1 i x ≠ 5
log3 (x - 1)² + log3 (x - 5)² ≤ 2
log3 [ (x - 1)² * (x - 5)²] ≤ log3 3²
(x - 1)² * (x - 5)² ≤ 3²
(x² - 2x + 1)(x² - 10x + 25) - 9 ≤ 0
x⁴ - 10x³ + 25x² - 2x³ + 20x² - 50x + x² - 10x + 25 - 9 ≤ 0
x⁴ - 12x³ + 46x² - 60x + 16 ≤ 0
W(4) =4⁴ - 12 * 4³ + 46 * 4² - 60 * 4 + 16 = 256 - 768 + 736 - 240 + 16 = 0
x³ - 8x² + 14x - 4
-------------------------------
(x⁴ - 12x³ + 46x² - 60x + 16) : (x - 4)
-x⁴ + 4x³
------------------
- 8x³ + 46x²
8x³ - 32x²
-----------------
14x² - 60x
- 14x² + 56x
---------------
- 4x + 16
4x - 16
----------
= =
Q(x) = x³ - 8x² + 14x - 4
Q(2) = 8 - 32 + 28 - 4 = 36 - 36 = 0
x² - 6x + 2
------------------------
(x³ - 8x² + 14x - 4) : (x - 2)
-x³ + 2x²
----------------
- 6x² + 14x
6x² - 12x
------------
2x - 4
-2x + 4
--------
= =
x² - 6x + 2
Δ = 36 - 8 = 28
√Δ = √28 = 2√7
x1 = (6 - 2√7) / 2 = 3 - √7
x2 = (6 + 2√7) / 2 = 3 + √7
(x - 4) (x³ - 8x² + 14x - 4) ≤ 0
(x - 4)(x - 2)(x² - 6x + 2) ≤ 0
(x - 4)(x - 2)(x - x1)(x - x2) ≤ 0
4 2 x1 x2
x ∈ <x1 ; 2> u < 4 ; x2 > i D
odp. x ∈ (1 ; 2> u < 4; 5) u (5, 3 + √7>