Rozwiązać Równanie:
log(2x+5)+log(2,6-x)=0
log(2x+5) + log(2,6-x) = 0
D: 2x + 5 > 0 i 2,6 - x > 0
x > -5/2 i x < 2,6
D = (-5/2; 2,6)
log [(2x + 5) * (2,6 - x) ] = log 10^0
(2x + 5) * (2,6 - x) = 10^0
(2x + 5) * (2,6 - x) = 1
5,2x - 2x² + 13 - 5x = 1
-2x² + 0,2x + 12 = 0
x² - 0,1x - 6 = 0
Δ = 0,01 + 24 = 24,01
√Δ = 4,9
x1 = (0,1 - 4,9)/2 = -4,8/2 = -2,4 ∈ D
x2 = (0,1 + 4,9)/2 = 5/2 = 2,5 ∈ D
ODP. x = -2,4 lub x = 2,5
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
log(2x+5) + log(2,6-x) = 0
D: 2x + 5 > 0 i 2,6 - x > 0
x > -5/2 i x < 2,6
D = (-5/2; 2,6)
log [(2x + 5) * (2,6 - x) ] = log 10^0
(2x + 5) * (2,6 - x) = 10^0
(2x + 5) * (2,6 - x) = 1
5,2x - 2x² + 13 - 5x = 1
-2x² + 0,2x + 12 = 0
x² - 0,1x - 6 = 0
Δ = 0,01 + 24 = 24,01
√Δ = 4,9
x1 = (0,1 - 4,9)/2 = -4,8/2 = -2,4 ∈ D
x2 = (0,1 + 4,9)/2 = 5/2 = 2,5 ∈ D
ODP. x = -2,4 lub x = 2,5