Rozwiązać równanie :
logx 2 + log2 x = 2,5 x ≠1 i x > 0
log2 2 / log2 x + log2 x = 2,5
1 / log2 x + log2 x = 2,5 / * log2 x
1 + log2 x * log2 x = 2,5 * log2 x
(log2 x)^2 - 2,5 log2 x + 1 = 0
log2 x = t
t^2 - 2,5 t + 1 = 0
Δ = 6,25 - 4 = 2,25
√Δ = 1,5
t1 = (2,5 - 1,5)/2 = 1/2
t2 = (2,5 + 1,5)/2 = 4/2 = 2
log2 x = 1/2 lub log2 x = 2
log2 x = log2 2^(1/2) lub log2 x = log2 2^2
x = √2 lub x = 4
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
logx 2 + log2 x = 2,5 x ≠1 i x > 0
log2 2 / log2 x + log2 x = 2,5
1 / log2 x + log2 x = 2,5 / * log2 x
1 + log2 x * log2 x = 2,5 * log2 x
(log2 x)^2 - 2,5 log2 x + 1 = 0
log2 x = t
t^2 - 2,5 t + 1 = 0
Δ = 6,25 - 4 = 2,25
√Δ = 1,5
t1 = (2,5 - 1,5)/2 = 1/2
t2 = (2,5 + 1,5)/2 = 4/2 = 2
log2 x = 1/2 lub log2 x = 2
log2 x = log2 2^(1/2) lub log2 x = log2 2^2
x = √2 lub x = 4