Rozwiąż równanie: a) x^3 - 2x^2 + 2 =x b)x^3 + 5x^2 + 3x + 15 = 0
a) x³ - 2x² + 2 =x
x³ - 2x² -x +2= 0
x²(x-2) -1(x-2)=0
(x-2)(x²-1)=0
(x-2)(x-1)(x+1)=0
x=2 ∨ x=1 ∨ x=-1
b)x³ + 5x² + 3x + 15 = 0
x²(x+5)+3(x+5)=0
(x+5)(x²+3)=0
x=-5
x²(x-2)-(x-2)=0
x=2 v x=1 v x=-1
b)
dla x²+3=0 nie ma pierwiastkow (Δ<0)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
a) x³ - 2x² + 2 =x
x³ - 2x² -x +2= 0
x²(x-2) -1(x-2)=0
(x-2)(x²-1)=0
(x-2)(x-1)(x+1)=0
x=2 ∨ x=1 ∨ x=-1
b)x³ + 5x² + 3x + 15 = 0
x²(x+5)+3(x+5)=0
(x+5)(x²+3)=0
x=-5
x²(x-2)-(x-2)=0
(x-2)(x²-1)=0
(x-2)(x-1)(x+1)=0
x=2 v x=1 v x=-1
b)
x²(x+5)+3(x+5)=0
(x+5)(x²+3)=0
x=-5
dla x²+3=0 nie ma pierwiastkow (Δ<0)