1/R = (1/ R1 + R2) + (1/ R1+R3)wyznacz R2
1/R = (1/ R1 + R2) + (1/ R1+R3)
1/R = 1/(R1+R2) + 1/( R1+R3) / - 1/(R1+R2)
1/R - 1/(R1+R2) = 1/(R1+R3) / - 1/R
-1/(R1+R2) = 1/(R1+R3) - 1/R / * (R1+R2)
-1 = (R1+R2)/(R1+R3) - (R1+R2)/R
(R1+R2)/(R1+R3) - (R1+R2)/R = -1 / *(R1+R3)
(R1+R2) - (R1+R2)(R1+R3)/R = -(R1+R3)
(R1+R2) - (R1^2 + R1R3 + R2R1 + R2R3)/R = -(R1+R3) /*R
R(R1+R2) - (R1^2 + R1R3 + R2R1 + R2R3) = -R(R1+R3)
R1R + R2R - R1^2 - R1R3 - R2R1 - R2R3 = - RR1 - RR3 / - R1R
R2R - R1^2 - R1R3 - R2R1 - R2R3 = - RR1 - RR3 - R1R / + R1^2
R2R - R1R3 - R2R1 - R2R3 = - RR1 - RR3 - R1R + R1^2 / + R1R3
R2R - R2R1 - R2R3 = - RR1 - RR3 - R1R + R1^2 + R1R3
R2 (R - R1 - R3) = - RR1 - RR3 - R1R + R1^2 + R1R3 / : (R - R1 - R3)
R2 = (- RR1 - RR3 - R1R + R1^2 + R1R3) : ( R - R1 - R3)
dużo trochę, ale po kolei wszystko starałam się rozpisać.
pozdrawiam :)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
1/R = (1/ R1 + R2) + (1/ R1+R3)
1/R = 1/(R1+R2) + 1/( R1+R3) / - 1/(R1+R2)
1/R - 1/(R1+R2) = 1/(R1+R3) / - 1/R
-1/(R1+R2) = 1/(R1+R3) - 1/R / * (R1+R2)
-1 = (R1+R2)/(R1+R3) - (R1+R2)/R
(R1+R2)/(R1+R3) - (R1+R2)/R = -1 / *(R1+R3)
(R1+R2) - (R1+R2)(R1+R3)/R = -(R1+R3)
(R1+R2) - (R1^2 + R1R3 + R2R1 + R2R3)/R = -(R1+R3) /*R
R(R1+R2) - (R1^2 + R1R3 + R2R1 + R2R3) = -R(R1+R3)
R1R + R2R - R1^2 - R1R3 - R2R1 - R2R3 = - RR1 - RR3 / - R1R
R2R - R1^2 - R1R3 - R2R1 - R2R3 = - RR1 - RR3 - R1R / + R1^2
R2R - R1R3 - R2R1 - R2R3 = - RR1 - RR3 - R1R + R1^2 / + R1R3
R2R - R2R1 - R2R3 = - RR1 - RR3 - R1R + R1^2 + R1R3
R2 (R - R1 - R3) = - RR1 - RR3 - R1R + R1^2 + R1R3 / : (R - R1 - R3)
R2 = (- RR1 - RR3 - R1R + R1^2 + R1R3) : ( R - R1 - R3)
dużo trochę, ale po kolei wszystko starałam się rozpisać.
pozdrawiam :)