Oblicz sinusa i cosinusa kata ,którego jedno ramię pokrywa się z dodatnią półosią osi x ,drugie zaś przechodzi przez punkt a) A(1,3) b) A(12,5) c)A(pierwiastek z 5,2) d) A(2pierwiastek z 2,1)
Janek191
A) A = (1 ; 3) Jeżeli P =( x; y) , to sin α = y/r oraz cos α = x/r , gdzie r² = x² + y² mamy x = 1 y = 3 r² = 1² + 3²= 1 + 9 = 10 r = √10 sin α = y/r = 3/√10 = 0,3 √10 cos α = x/r = 1/ √10 = √10/ 10 b) A = ( 12; 5) x = 12, y = 5, r² = 12² + 5² = 144 + 25 = 169 r = √169 = 13 sin α = 5/13 cos α = 12/13 c) A = (√5 ; 2 ) x = √5, y = 2, r² = (√5)² + 2² = 5 + 4 = 9 r = √9 = 3 sin α = 2/3 cos α = √5/ 3 d) A = ( 2√2; 1) x = 2√2, y = 1, r² = (2√2)² + 1² = 4*2 + 1 = 8 + 1 = 9 r = √9 = 3 sin α = 1/3 cos α = (2√2)/3 = (2/3)*√2
A = (1 ; 3)
Jeżeli P =( x; y) , to
sin α = y/r oraz cos α = x/r , gdzie r² = x² + y²
mamy
x = 1
y = 3
r² = 1² + 3²= 1 + 9 = 10
r = √10
sin α = y/r = 3/√10 = 0,3 √10
cos α = x/r = 1/ √10 = √10/ 10
b)
A = ( 12; 5)
x = 12, y = 5, r² = 12² + 5² = 144 + 25 = 169
r = √169 = 13
sin α = 5/13
cos α = 12/13
c)
A = (√5 ; 2 )
x = √5, y = 2, r² = (√5)² + 2² = 5 + 4 = 9
r = √9 = 3
sin α = 2/3
cos α = √5/ 3
d)
A = ( 2√2; 1)
x = 2√2, y = 1, r² = (2√2)² + 1² = 4*2 + 1 = 8 + 1 = 9
r = √9 = 3
sin α = 1/3
cos α = (2√2)/3 = (2/3)*√2