\frac{x+1}{x^2-4}+\frac{5}{2x+4}=\ ???
x+1 5
------ + --------- =
x²-4 2x+4
Z:
x²-4 ≠ 0
(x+2)(x-2) ≠ 0
x ≠ -2, x ≠ 2
2x+4 ≠ 0
2(x+2) ≠ 0
x ≠ -2
D = R \ {-2; 2}
= (x+1)/[(x+2)(x-2)] + 5/2(x+2) = [2(x+1)+5(x-2)]/[2(x+2)(x-2) = (2x+2+5x-10)/[2(x+2)(x-2)] =
= (7x-8)/[2(x+2)(x-2)]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
x+1 5
------ + --------- =
x²-4 2x+4
Z:
x²-4 ≠ 0
(x+2)(x-2) ≠ 0
x ≠ -2, x ≠ 2
2x+4 ≠ 0
2(x+2) ≠ 0
x ≠ -2
D = R \ {-2; 2}
= (x+1)/[(x+2)(x-2)] + 5/2(x+2) = [2(x+1)+5(x-2)]/[2(x+2)(x-2) = (2x+2+5x-10)/[2(x+2)(x-2)] =
= (7x-8)/[2(x+2)(x-2)]