" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
a = 2
b = 5
c = 2
delta = 5² - 4*2*2 = 25 - 16 = 9
√Δ = 3
p = -b/2a
p = -5/(2*2) = -5/4
q = -Δ/4a
q = -9/(4*2) = -9/8
Postać kanoniczna f(x) = a(x - p)² + q
f(x) = 2x² + 5x + 2 = 2(x + 5/4)² - 9/8
Postać iloczynowa f(x) = a(x-x₁)(x-x₂)
delta = 9
√Δ = 3
x₁ = (-5-3)/(2*2) = -8/4 = -2
x₂ = (-5+3)/(2*2) = -2/4 = -1/2
f(x) = 2x² + 5x + 2 = 2(x + 2)(x + 1/2)
Δ=25-4*2*2=25-16=9
x₁=-5-3/4=-2
x₂=-5+3/4=-1/2
f(x)=2(x+2)(x+1/2) <- postać iloczynowa.
-b/2a = -5/4=-1¼
-Δ/4a=-9/8= -1¹₈
f(x)= 2(x-1¼)²+1¹₈ <- postać kanoniczna.
a= 2, b= 5, c= 2
a) wyznaczamy postać iloczynową f(x)= a(x-x₁)(x-x₂),
gdzie Δ= 5²- 4*2*2= 25- 16= 9 , √Δ= √9= 3
x₁= (-b-√Δ)/2a = ⁻⁵⁻³/₄ = -2
x₂= (-b+√Δ)/2a = ⁻⁵⁺³/₄ = -½
f(x)= 2(x+2)(x+½)
b) wyznaczamy postać kanoniczną f(x)= a(x- p)²+ q,
gdzie p= -b/2a= ⁻⁵/₄, q= -Δ/4a= ⁻⁹/₈
f(x)= 2(x+ ⁵/₄)² ⁻⁹/₈
Odp. Postać iloczynowa funkcji f(x) = 2x²+ 5x+ 2,
to f(x)= 2(x+2)(x+½), a postać kanoniczna f(x)= 2(x+ ⁵/₄)² ⁻⁹/₈