Zadanie w załączniku LOGARYTMY
log 5(3) = 1/( log 3(5)
korzystamy z własności logarytmów
log a(b) = 1/( log b(a) ]
====================
Uzasadnienie powyższego wzoru:
log a(b) = x <=> a^x = b
log b(a) = y <=> b^y = a
zatem
a^x = [ b^y]^x = b^(y*x)
ale a^x = b
zatem y*x = 1
x = 1/y
czyli
log a(b) = 1/[log b(a)]
======================
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
log 5(3) = 1/( log 3(5)
korzystamy z własności logarytmów
log a(b) = 1/( log b(a) ]
====================
Uzasadnienie powyższego wzoru:
log a(b) = x <=> a^x = b
log b(a) = y <=> b^y = a
zatem
a^x = [ b^y]^x = b^(y*x)
ale a^x = b
zatem y*x = 1
x = 1/y
czyli
log a(b) = 1/[log b(a)]
======================