rozwiąż
(x)/(x^2-1) - (x+1)/(x-1) =
założenia :
zał.x≠ ±1
x∈R\{-1,1}
x/(x-1)(x+1) - (x+1)(x+1)/(x-1)(x+1)=
=[ x -(x+1)²]/(x-1)(x+1) =[x-(x²+2x+1)]/(x+1)(x-1)=
=(x-x²-2x-1)/(x+1)(x-1)=(-x²-x-1)/(x-1)(x+1)=
=-(x²+x+1)/(x²-1)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
założenia :
zał.x≠ ±1
x∈R\{-1,1}
x/(x-1)(x+1) - (x+1)(x+1)/(x-1)(x+1)=
=[ x -(x+1)²]/(x-1)(x+1) =[x-(x²+2x+1)]/(x+1)(x-1)=
=(x-x²-2x-1)/(x+1)(x-1)=(-x²-x-1)/(x-1)(x+1)=
=-(x²+x+1)/(x²-1)