WZORY SKRÓCONEGO MNOZENIA ROZWIĄŻ Tylko proszę o całe rozpisanie
(2n+4)²=
(3x -√5)²=
(2n+3)³=
(x+2)³=
(3x+1)³=
(2n-4)³=
(5x-2)³=
(3x+4)³=
(x-5)³=
(4x+3)³=
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
^2 to znaczy "do potęgi drugiej"
* to znaczy "pomnożyć"
(a+b)^2 = a^2 + 2ab + b^2
(a-b)^2 = a^2 - 2ab + b^2
(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3
(a-b)^3 = a^3 - 3a^2b - 3ab^2 + b^3
(2n+4)²= 4n^2 + 2*2n*4 + 16 = 4n^2 + 16n + 16
(3x -√5)²= 9x^2 - 2*3x*pierwiastek z 5 + 5 = 9x^2 - 6x pierwiastków z 5 + 5
(2n+3)³= 8n^3 + 3*4n^2*3 + 3*2n*9 + 9 = 8n^3 + 36n^2 + 54n + 9
(x+2)³= x^3 + 3*x^2*2 + 3*x*4 + 8 = x^3 + 6x^2 + 12x + 8
(3x+1)³= 27x^3 + 3*9x^2*1 + 3*3x*1 + 1 = 27x^3 + 27x^2 + 9x + 1
(2n-4)³= 8n^3 - 3*4n^2*4 + 3*2n*16 - 64 = 8n^3 - 48n^2 + 96n - 64
(5x-2)³= 125x^3 - 3*25x^2*2 + 3*5x*4 - 8 = 125x^3 - 150x^2 + 60x - 8
(3x+4)³= 27x^3 + 3*9x^2*4 + 3*3x*16 + 64 = 27x^3 + 108x^2 + 144x + 64
(x-5)³= x^3 - 3*x^2*5 + 3*x*25 - 125 = x^3 - 10x^2 + 75x - 125
(4x+3)³= 64x^3 + 3*16x^2*3 + 3*4x*9 + 27 = 64x^3 + 144x^2 + 108x + 27
(2n+4)²=4n+16
(3x -√5)²=9x-5
(2n+3)³=8n+27
(x+2)³=3x+8
(3x+1)³=27x+1
(2n-4)³=8n-64
(5x-2)³=125x-8
(3x+4)³=27x+64
(x-5)³=3x-125
(4x+3)³=64x+27