wyznacz ciąg arytmetyczny, w którym suma trzech początkowych wyrazów jest równa 27, a suma kwadratów tych wyrazów wynosi 275
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a1
a2 = a1+r
a3 = a1+2r
a1+a1+r +a1+2r = 27
a1²+(a1+r)²+(a1+2r)² = 275
3a1+3r = 27==================/:3
a1²+a1²+2a1r+r²+a1²+4a1r+4r² = 275
a1+r = 9
3a1²+6a1r+5r² = 275
a1 = 9-r
3(9-r)²+6r(9-r)+5r² = 275
3(81 -18r+r²) +54r-6r²+5r² = 275
243-54r+3r²+54r-r² = 275
2r² -32 = 0
2r² = 32
r²=16
r = 4 lub -4
czyli mamy dwa rozwiazania
r = 4 i a1 = 5
lub r = -4, a1 = 13
wzór ogólny ciągu an = a1+(n-1)*r = 5 + (n-1)*4 = 5+4n-4 = 4n+1
lub an = 13+ (n-1)* -4 = 13 -4n+4 = -4n+17