Wielomiany P(x)=(x²-2)² i Q(x)=x⁴+(a+5)x³+bx²+4 są równe dla:
a)a=0, b=4
b)a=-5, b=-4
c)a=0, b=-4
d)a=-5,b=4
Proszę również o wytłumaczenie a nie tylko o wynik
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
sprawdzamy to podstawiajac za a i b wartosci
P(x)= (x^2-2)^2= x^4 -4x^2+4
widac ze po rozpisaniu wzoru skroconego mnozenia nie wystepuje x do potegi 3 wiec a musi byc rowne -5 bo -5+5=0 a wartosc przy x^2 musi wynosic -4 wiec prawidlowa odp to odp. b
P(x)=(x²-2)² i Q(x)=x⁴+(a+5)x³+bx²+4
P(x)=(x²-2)²=x⁴-4x²+4
a) a=0 b=4
x⁴+(0+5)x³+4x²+4 =x⁴-4x²+4
x⁴+5x³+4x²+4 =x⁴-4x²+4
L≠P
b)a=-5, b=-4
x⁴+(-5+5)x³-4x²+4 =P
x⁴-4x²+4 =P
L=P
c)a=0, b=-4
x⁴+5x³-4x²+4 =P
P≠L
d)a=-5,b=4
x⁴+(-5+5)x³+4x²+4 =P
x⁴+4x²+4 =P
P=L