" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
cos 4x = sin x
cos 4x = cos (1/2π - x)
4x = 1/2π - x + k.2π ....(1)
4x = -(1/2π - x) + k.2π ........(2)
Persamaan (1)
4x = 1/2π - x + k.2π
5x = 1/2π + k.2π
x = 1/10π + k.2/5π
x = 1/10π + k.4/10π
k = 0 → x = 1/10π
k = 1 → x = 1/10π + 1.4/10π = 1/2π
k = 2 → x = 1/10π + 2.4/10π = 6/10π
k = 3 → x = 1/10π + 3.4/10π = 13/10π
k = 4 → x = 1/10π + 4.4/10π = 17/10π
Persamaan (2)
4x = -(1/2π - x) + k.2π
4x = -1/2π + x + k.2π
3x = -1/2π + k.2π
x = -1/6π + k.2/3π
x = -1/6π + k.4/6π
k=1 → x = -1/6π + 1.4/6π = 1/2π
k=2 → x = - 1/6π + 2.4/6π = 7/6π
k=3 → x = -1/6π + 3.4/6π = 11/6π
Hp = {1/10π, 1/2π, 9/10π, 7/6π, 13/10π, 17/10π, 11/6π}
=============================================
Nomor 2
sin 2x = cos x
sin 2x = sin(1/2π - x)
2x = (1/2π - x) + k.2π ....(1)
2x = [π - (1/2π - x) + k.2π ....(2)
Persamaan (1)
2x = 1/2π - x + k.2π
x = 1/6π + k.2/3π
x = 1/6π + k.4/6π
k = 0 → x = 1/6π
k = 1 →x = 1/6π + 1.4/6π = 5/6π
k = 2 → x = 1/6π + 2.4/6π = 9/6π
Persamaan (2)
2x = [π - (1/2π - x)] + k.2π
= 1/2π + x + k.2π
x = 1/2π + k.2π
k = 0 → x = 1/2π
Hp = {1/6π, 1/2π, 5/6π, 9/6π }