3. Ragam varian dari 6,8,6,7,8,7,9,7,7,6,7,8,6,5,8,7 sebanyak...
4. Suatu desa membentuk susunan pengurus desa. Pemilihannya diikuti 4 orang berusia 20 tahunan, 5 orang berusia 30 tahunan, 6 orang berusia 40 tahunan. Pengurus terdiri atas kepala desa, wakil kepala, dan sekertaris. Umur kepala desa harus lebih tinggi dari wakil kepala dan sekertaris. Tentukan banyak kemungkinan susunan pengurus tersebut!
5. Pelatih akan mengirimkan 10 pemain tennis putra dan 5 pemain tenis putri mereka ke suatu olimpiade tenis. Darinya akan dibentuk pasangan ganda, baik putra, putri, ataupun campuran. Hitunglah banyak pasangan pemain ganda yang bisa dibuat!
==========
2)
20-29 = 3
30-39 = 7
40-49 = 8
50-59 = 12
60-69 = 9
70-79 = 6
80-89 = 5
f =3 + 7 + 8 + 12 + 9 + 6 + 5 = 50
kuartil atas = data ke-50*3/4 = 37,5 = antara 37 dan 38
= kelas ke- (60 - 69)
tb = 60 - 0,5 = 59,5
p = (69 - 60) + 1 = 10
N = 50
Fk = 3 + 7 + 8 + 12 = 30
f = 9
Q3 = tb + p*(3/4 N - Fk)/f
= 59,5 + 10*(3/4 * 50 - 30)/9
= 59,5 + 25/3
= 59,5 + 8,3
= 67,8
=====
3)
Ragam varian dari 6,8,6,7,8,7,9,7,7,6,7,8,6,5,8,7
x bar = rata-rata = 112/16 = 7
varian = ∑(xi - x bar)²/n
= (6 - 7)²/16 + (8 - 7)²/16 + (6 - 7)²/16 + ... + (7 - 7)²/16
= 1
==========
4)
4 orang = 20 tahun
5 orang = 30 tahun
6 orang = 40 tahun
misal, kepala desa = 40 tahun
= 6P1 * (5 + 4)P2
= 6!/(6-1)! * 9!/(9-2)!
= 6 * 9 * 8
= 432
misal, kepala desa = 30 tahun
= 5P1 * 4P2
= 5!/(5-1)! * 4!/(4-2)!
= 5 * 4 * 3
= 60
banyaknya cara = 432 + 60
= 492 cara
==========
5)
banyaknya ganda putra = 10C2
= 10!/(10-2)!2!
= 10!/(8!2!)
=10x9/2
= 5x9
= 45
banyaknya ganda putri = 5C2
= 5!/(5-2)!2!
= 5!/(3!2!)
= 5x4/2
= 5x2
= 10
banyaknya ganda campuran = 10C1 * 5C1
= 10*5
= 50
banyaknya cara = 45 + 10 + 50
= 105 cara