zad. 1
Zapisz następujące wyrażenia w prostszej postaci:
b) sin α * cos^2 α + sin^3 α (ma wyjść w rozwiązanu sin α)
zad. 2
Sprawdź, czy podane równości są tożsamościami trygonometrycznymi.
a) 1-2 sin^2 α = 2 cos^2 α - 1
b) cos^2 α = 2 cos^2 α - 1
d) cos α + cos α * ctg^2 α = ctg α/sin α
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Zad.1
b)
sin a * cos^2 a + sin^3 a = sin a*(cos^2 a + sin^2 a) = sin a *1 = sin a
Zad.2
a)
1-2sin^ a = 2cos^2 a -1
L = 1-2(1-cos^2 a) = 1-2+2cos^ a = 2cos^2 a -1
L = P
b)
cos2 a = 2cos^2 a -1
P = 2cos^ a -(sin^2 a + cos^2 a) = 2cos^2 a - sin^2 a - cos^2 a =
= cos^2 a - sin^2 a = cos^2 a -(1-cos^2 a) = cos^2 a -1 + cos^ a = 2cos^2 a -1
P = L
d)
cos a + cos a * tg^2 a = ctg a/sin a
L = cos a + cos a*(cos a/sin a)^2 = (cos a * sin^2 a + cos^3 a)/sin^2 a =
= cos a(sin^2 a + cos2 a)/sin^2 a = cos a/sn^2 a = ctg a * 1/sin a = ctg a/sin a
L = P