rozwiaz nierownosc
bardzo prosze o pomoc daje naj
log 4 [ x ] = log 2^2 [ x] = (1/2) log 2 [ x]
log 8 [ x ] = log 2^3 [ x ] = (1/3) log 2 [ x]
więc
log 2 [ x] + log 4 [ x ] + log 8 [ x ] < 2 ; x > 0
log 2 [ x ] + (1/2) log 2 [ x ] + (1/3) log 2 [ x ] < 2
log 2 [ x ] + log 2 [ x^(1/2) ] + log 2 [ x^(1/3) ] < loq 2 [ 4]
log 2 [ x* x^(1/2) * x^(1/3) ] < log 2 [ 4]
x * x^(1/2) * x^(1/3) < 4
x^( 1 + 1/2 + 1/3) < 4
x^(11/6) < 4
x^11 < 4^6
x^11 < 4 096
x < p 11 st ( 4 096 )
=================
p 11 st - pierwiastek 11 stopnia
---------------------------------------
II sposób :
log 2 [ x ] + (1/2) log 2 [ x] + (1/3) log 2 [ x ] < 2
log 2 [ x ] = y
y + (1/2) y + (1/3) y < 2
(11/6) y < 2 / * ( 6/11)
y < 12/11
czyli
log2 [ x ] < 12/11
log 2 [ x ] < log 2 [ 2 ^(12/11) ]
x < 2^(12/11)
===============
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
log 4 [ x ] = log 2^2 [ x] = (1/2) log 2 [ x]
log 8 [ x ] = log 2^3 [ x ] = (1/3) log 2 [ x]
więc
log 2 [ x] + log 4 [ x ] + log 8 [ x ] < 2 ; x > 0
log 2 [ x ] + (1/2) log 2 [ x ] + (1/3) log 2 [ x ] < 2
log 2 [ x ] + log 2 [ x^(1/2) ] + log 2 [ x^(1/3) ] < loq 2 [ 4]
log 2 [ x* x^(1/2) * x^(1/3) ] < log 2 [ 4]
x * x^(1/2) * x^(1/3) < 4
x^( 1 + 1/2 + 1/3) < 4
x^(11/6) < 4
x^11 < 4^6
x^11 < 4 096
x < p 11 st ( 4 096 )
=================
p 11 st - pierwiastek 11 stopnia
---------------------------------------
II sposób :
log 2 [ x ] + (1/2) log 2 [ x] + (1/3) log 2 [ x ] < 2
log 2 [ x ] = y
y + (1/2) y + (1/3) y < 2
(11/6) y < 2 / * ( 6/11)
y < 12/11
czyli
log2 [ x ] < 12/11
log 2 [ x ] < log 2 [ 2 ^(12/11) ]
x < 2^(12/11)
===============