Na jakiej wysokości nad powierzchnią Ziemi przyciąganie grawitacyjne będzie czterokrotnie mniejsze niż na powierzchni Ziemi? Promień kuli ziemskiej wynosi około 6400 km. Nie rozumiem dlaczego wzór ma być taki : GM/R2=GM/(R+h)2 x 25, dlaczego razy 25? Może ktoś wytłumaczyć? nie można po jednej stronie pod m wpisać 25?
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Witaj :)
dane: g, r₁=R, n=4, g'=g/n=¼g -------> g/g' = 4
szukane: h=r- r₁ = r - R
----------------------------
Dla dowolnego r ≥ R jest:
F' = mg' = GMm/r².......ale na powierzchni Ziemi czyli dla r = r₁ = R mamy:
F = mg = GMm/R²
---------------------------- po podzieleniu równań stronami otrzymujemy:
g/g' = r²/R² = n = 4
r² = 4R².........|√
r = 2R
h = r - R = 2R - R = R = 6400km
Szukana wysokość wynosi R = 6400km nad powierzchnią Ziemi ( a 2R = 12800km od jej środka).
Semper in altum...............................pozdrawiam :)
Jeśli podoba Ci się to rozwiązanie, możesz uznać je za najlepsze- wówczas otrzymasz zwrot 15% punktów wydanych na to zadanie. W przypadku 1 rozwiązania możesz to zrobić po godzinie od jego dodania.
PS. W razie wątpliwości - pytaj :)