Punkty A+(-9,-3) i B=(5,5) sa wierzcholkami trojkata prostokatnego ABC, w ktorym AB jet przeciw prostokatna. Wyznacz wspolrzedne wierzcholka C, wiedzac ze lezy on na osi Ox.
OBLICZENIA PROSZE
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
A = ( - 9; -3), B = (5; 5)
C = ( x ; 0) - leży na osi OX
Mamy
I AB I^2 = ( 5 - (-9))^2 + (5 - (-3))^2 = 14^2 + 8^2 = 196 + 64 = 260
I AB I^2 = 260
--------------------
I AC I^2 = ( x -(-9))^2 + (0 - (-3))^2 = ( x + 9)^2 + 3^2 = x^2 + 18x + 81 + 9
I AC I^2 = x^2 + 18 x + 90
---------------------------------
I BC I^2 = ( x - 5)^2 + ( 0 -5)^2 = x^2 - 10 x + 25 +25
I BC I^2 = x^2 - 10 x + 50
--------------------------------
Ponieważ trójkąt ABC jest prostokatny, więc z Tw. Pitagorasa mamy
I A C I^2 + I BC I^2 = I AB I^2
czyli
x^2 + 18 x + 9 0 + x^2 - 10 x + 50 = 260
2 x^2 + 8 x - 120 = 0 / : 2
x^2 + 4 x - 60 = 0
-----------------------
delta = 4^2 - 4*1*(-60) = 16 + 240 = 256
p( delty) = 16
x = [ - 4 - 16]/2 = - 10 lub x = [ - 4 + 16]/2 = 6
Odp.
C = ( - 10; 0 ) lub C = ( 6 ; 0)
==================================