October 2018 1 33 Report

Proszę o rozwiązanie ukladów równań z góry wielkie dzięki.

a)\left \{ {{\frac{1}{2}x+\frac{1}{4}y=\frac{1}{4}x-1} \atop- {\frac{1}{4}x+\frac{1}{2}y=\frac{1}{4}y+3}} \right.

b)\left \{ {{\frac{1}{2}(x-y)=\frac{1}{3}(x+y)} \atop {\frac{4}{5}x-\frac{1}{5}(y+3x)=-4}} \right.

c)\left \{ {{\frac{x-1}{2}+\frac{y+1}{3}=3} \atop {\frac{x+1}{3}-\frac{y-2}{6}=2}} \right.


5.0
3 głosy
3 głosy
Oceń!
Oceń!
ag94

a)\left \{ {{\frac{1}{2}x+\frac{1}{4}y=\frac{1}{4}x-1\\ \\ } \atop- {\frac{1}{4}x+\frac{1}{2}y=\frac{1}{4}y+3\\ \\}} \right. \\ \\ \left \{ {{\frac{1}{2}x+\frac{1}{4}y-\frac{1}{4}x=-1} \atop- {\frac{1}{4}x+\frac{1}{2}y-\frac{1}{4}y=3}} \right.\\ \\ \left \{ {{\frac{2}{4}x+\frac{1}{4}y-\frac{1}{4}x=-1} \atop- {\frac{1}{4}x+\frac{2}{4}y-\frac{1}{4}y=3}} \right.\\ \\ \left \{ {{\frac{1}{4}x+\frac{1}{4}y=-1} \atop- {\frac{1}{4}x+\frac{1}{4}y=3}} \right.\\ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\\

\frac{1}{4}y+\frac{1}{4}y=-1+3\\ \\ \frac{2:2}{4:2}y=2\\ \\ \frac{1}{2}y=2\ \ |*2\\ \\ y=4

 

\frac{1}{2}x+\frac{1}{4}*4=\frac{1}{4}x-1\\ \\ \frac{1}{2}x+1=\frac{1}{4}x-1\\ \\ \frac{1*2}{2*2}x-\frac{1}{4}x=-1-1\\ \\ \frac{2}{4}x-\frac{1}{4}x=-2\\ \\ \frac{1}{4}x=-2 \ \ \ |*4\\ x=-8

odpowiedź:

\left \{ {{x=4} \atop {y=-8}} \right.

 

 

 

 

 

 

 


b)></p><p> </p><p><img src=

 

\frac{1}{2}(x-(-5))=\frac{1}{3}(x+(-5))\\ \\ \frac{1}{2}x+\frac{5}{2}=\frac{1}{3}x-\frac{5}{3} \ |*6\\ \\ 3x+15=2x-10\\ \\ 3x-2x=-15-10\\ x=-25

odpowiedź:

\left \{ {{x=-25} \atop {y=-5}} \right.

 

 

 

 

 

 

 

 


c)\left \{ {{\frac{x-1}{2}+\frac{y+1}{3}=3 \ |*6} \atop {\frac{x+1}{3}-\frac{y-2}{6}=2}\ |*6} \right.\\ \\ \left \{ {{3(x-1)+2(y+1)=18 \ } \atop {2(x+1)-y-2=12}\ } \right.\\ \\ \left \{ {{3x-3+2y+2=18 \ } \atop {2x+2-(2y-2)=12}\ } \right.\\ \\ \left \{ {{3x+2y=18+1 \ } \atop {2x-2y=8}\ |*2\ } \right.\\ \\ \left \{ {{3x+2y=19 \ } \atop {4x-2y=16}\ } \right.\\ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\\ 3x+4x+2y-2y=19+16\\ 7x=35 |:7\\ x=5

 3(x-1)+2(y+1)=18 \\ 3(5-1)+2y+2=18\\\\ 15-3+2y+2=18\\ \\ 2y=18+1-15\\ 2y=19-15\\ 2y=4 |:2 y=2   odpowiedź:\left \{ {{x=5} \atop {y=2}} \right.

0 votes Thanks 0

Recommend Questions



Life Enjoy

" Life is not a problem to be solved but a reality to be experienced! "

Get in touch

Social

© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.