Może mi to ktoś wytłumaczyć:
To są liczby zespolone. Proszę o obliczenie i wytłumaczenie jak to obliczyliście.
1)
[ p(2) i + p(2)]^5 = [ p(2)*( i + 1)]^5 = [ p(2)]^5 * [ i + 1)^5 = 4 p(2)*( - 4 i - 4) =
= - 16 p(2) i - 16 p(2)
====================
bo
( i + 1)^5 = ( i +1)^2 * ( i + 1)^2 *( i + 1) = ( i^2 + 2i + 1)*( i^2 +2i + 1)*(i + 1) =
= 2i *2i *( i + 1) = 4 i^2 *( i + 1) = - 4*( i + 1) = - 4 i - 4
-------------------------------------------------------------------------------------------
II sposób:
p(2)i + p(2) = p(2) *[ i + 1]
i + 1 = p(2)([ cos 45 st + i sin 45 st]
czyli
[ i + 1]^5 = [ p(2)]^5 * [ cos 5*45 st + i sin 5*45 st ] =
= 4 p(2) *[ cos (180 + 45) st + i sin ( 180 + 45)st ] =
= 4 p(2) *[ - cos 45 st - i sin 45 st ] =
= 4 p(2) * [ - p(2)/2 - i * p(2)/2 ] =
= - 4 - 4 i
--------------
[ p(2) i + p(2)]^5 = [ p(2)]^5 * [ i + 1]^5 = 4 p(2) *[ - 4 - 4 i ] =
======================
2)
[ 1 - i ]^8 = [ ( 1 - i)^2 ]^4 = [ 1 - 2i + i^2]^4 = [ 1 -2i - 1]^4 = [ (- 2i )^4 =
= [ ( -2 i)^2]^2 = [ 4 i^2 ]^2 = ( - 4]^2 = 16
=======================================
1 - i = p(2) *[ cos ( -45 st) + i sin ( - 45 st)] =
= p(2)*[ cos 45 st - i sin 45 st]
zatem
[ 1 - i]^8 = [ p(2)]^8 *[ cos 45 st - i sin 45 st]^8 =
= 16 *[ cos 8*45st - i sin 8*45 st] = 16*[ cos 360 st - i sin 360 st ] =
= 16*[ cos 0 st - i sin 0 st ] = 16*[ 1 - i * 0 ] = 16
================================================
3)
( 2 + i)^4 = [ ( 2 + i)^2 ]^2 = [ 4 + 4 i + i^2 ]^2 =
= [ 4 + 4 i - 1]^2 = [ 3 + 4 i]^2 = 9 + 24 i + 16 i^2 =
= 9 +24 i - 16 = - 7 + 24 i
===========================
4)
x^2 +2 x + 10 = 0
delta = 2^2 - 4*1*10 = 4 - 40 = - 36 = 36*i^2
p(delty) = 6 i
x1 = [ - 2 - 6 i ]/2 = - 1 - 3 i
x2 = [ - 2 + 6 i]/2 = - 1 + 3 i
=============================
5)
x^4 + x^3 + x^2 + x + 1 = 0
Jest to równanie zwrotne 4 stopnia.
0 nie jest pierwiastkiem tego równania, zatem można podzielić obustronnie
przez x^2
Mamy
x^2 + x + 1 + 1/ x + 1/x^2 = 0
[ x + 1/x]^2 - 2 + 1 + (x + 1/x) = 0
Stosujemy w tym przypadku podstawienie
z = x + 1/x
z^2 + z - 1 = 0
-----------------------
delta = 1^1 - 4*1*(-1) = 1 + 4 = 5
p(delty) = p(5)
z1 = [ -1 - p(5)]/2
z2 = [ - 1 + p(5)]/2
czyli mamy
x + 1/x = [ - 1 - p(5)]/2 lub x + 1/x = [ - 1 + p(5)]/2
Mnozymy obustronnie przez 2
2 x + 2/x + 1 + p(5) = 0 lub 2 x + 2/x + 1 - p(5) = 0
Mnożymy przez x
2 x^2 + [ 1 + p(5)] x + 2 = 0 lub 2 x^2 + ( 1 - p(5)] x +2 = 0
2 x^2 + (1 + p(5)] x + 2 = 0
delta1 = [ 1 + p(5)]^2 - 4*2*2 = 1 + 2 p(5) + 5 - 16 = 2 p(5) - 10 < 0
delta1 = (-1)*( 10 - 2 p(5)] = ( 10 - 2 p(5)] *i ^2
p(delty1) = p [ 10 - 2 p(5)] * i
x1 = [ -1 - p(5) - p( 10 - 2 p(5))* i ]/4
x2 = [ -1 - p(5) + p( 10 - 2 p(5))* i ]/4
2 x^2 = [ 1 - p(5)] x + 2 = 0
delta2 = [ 1 - p(5)]^2 - 4*2*2 = 1 - 2 p(5) + 5 - 16 = - 2 p(5) - 10 < 0
delta2 = - 1*[ 10 + 2 p(5)] = [ 10 + 2 p(5)] *i^2
p ( delta2) = p [ 10 + 2 p(5)] *i
x3 = [ -1 + p(5) - p ( 10 + 2 p(5))* i ] / 4
x4 = [ -1 + p(5) + p( 10 + 2 p(5))* i ]/ 4
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
1)
[ p(2) i + p(2)]^5 = [ p(2)*( i + 1)]^5 = [ p(2)]^5 * [ i + 1)^5 = 4 p(2)*( - 4 i - 4) =
= - 16 p(2) i - 16 p(2)
====================
bo
( i + 1)^5 = ( i +1)^2 * ( i + 1)^2 *( i + 1) = ( i^2 + 2i + 1)*( i^2 +2i + 1)*(i + 1) =
= 2i *2i *( i + 1) = 4 i^2 *( i + 1) = - 4*( i + 1) = - 4 i - 4
-------------------------------------------------------------------------------------------
II sposób:
p(2)i + p(2) = p(2) *[ i + 1]
i + 1 = p(2)([ cos 45 st + i sin 45 st]
czyli
[ i + 1]^5 = [ p(2)]^5 * [ cos 5*45 st + i sin 5*45 st ] =
= 4 p(2) *[ cos (180 + 45) st + i sin ( 180 + 45)st ] =
= 4 p(2) *[ - cos 45 st - i sin 45 st ] =
= 4 p(2) * [ - p(2)/2 - i * p(2)/2 ] =
= - 4 - 4 i
--------------
czyli
[ p(2) i + p(2)]^5 = [ p(2)]^5 * [ i + 1]^5 = 4 p(2) *[ - 4 - 4 i ] =
= - 16 p(2) i - 16 p(2)
======================
2)
[ 1 - i ]^8 = [ ( 1 - i)^2 ]^4 = [ 1 - 2i + i^2]^4 = [ 1 -2i - 1]^4 = [ (- 2i )^4 =
= [ ( -2 i)^2]^2 = [ 4 i^2 ]^2 = ( - 4]^2 = 16
=======================================
II sposób:
1 - i = p(2) *[ cos ( -45 st) + i sin ( - 45 st)] =
= p(2)*[ cos 45 st - i sin 45 st]
zatem
[ 1 - i]^8 = [ p(2)]^8 *[ cos 45 st - i sin 45 st]^8 =
= 16 *[ cos 8*45st - i sin 8*45 st] = 16*[ cos 360 st - i sin 360 st ] =
= 16*[ cos 0 st - i sin 0 st ] = 16*[ 1 - i * 0 ] = 16
================================================
3)
( 2 + i)^4 = [ ( 2 + i)^2 ]^2 = [ 4 + 4 i + i^2 ]^2 =
= [ 4 + 4 i - 1]^2 = [ 3 + 4 i]^2 = 9 + 24 i + 16 i^2 =
= 9 +24 i - 16 = - 7 + 24 i
===========================
4)
x^2 +2 x + 10 = 0
delta = 2^2 - 4*1*10 = 4 - 40 = - 36 = 36*i^2
p(delty) = 6 i
x1 = [ - 2 - 6 i ]/2 = - 1 - 3 i
x2 = [ - 2 + 6 i]/2 = - 1 + 3 i
=============================
5)
x^4 + x^3 + x^2 + x + 1 = 0
Jest to równanie zwrotne 4 stopnia.
0 nie jest pierwiastkiem tego równania, zatem można podzielić obustronnie
przez x^2
Mamy
x^2 + x + 1 + 1/ x + 1/x^2 = 0
[ x + 1/x]^2 - 2 + 1 + (x + 1/x) = 0
Stosujemy w tym przypadku podstawienie
z = x + 1/x
Mamy
z^2 + z - 1 = 0
-----------------------
delta = 1^1 - 4*1*(-1) = 1 + 4 = 5
p(delty) = p(5)
z1 = [ -1 - p(5)]/2
z2 = [ - 1 + p(5)]/2
czyli mamy
x + 1/x = [ - 1 - p(5)]/2 lub x + 1/x = [ - 1 + p(5)]/2
Mnozymy obustronnie przez 2
2 x + 2/x + 1 + p(5) = 0 lub 2 x + 2/x + 1 - p(5) = 0
Mnożymy przez x
2 x^2 + [ 1 + p(5)] x + 2 = 0 lub 2 x^2 + ( 1 - p(5)] x +2 = 0
1)
2 x^2 + (1 + p(5)] x + 2 = 0
delta1 = [ 1 + p(5)]^2 - 4*2*2 = 1 + 2 p(5) + 5 - 16 = 2 p(5) - 10 < 0
delta1 = (-1)*( 10 - 2 p(5)] = ( 10 - 2 p(5)] *i ^2
p(delty1) = p [ 10 - 2 p(5)] * i
x1 = [ -1 - p(5) - p( 10 - 2 p(5))* i ]/4
x2 = [ -1 - p(5) + p( 10 - 2 p(5))* i ]/4
2)
2 x^2 = [ 1 - p(5)] x + 2 = 0
delta2 = [ 1 - p(5)]^2 - 4*2*2 = 1 - 2 p(5) + 5 - 16 = - 2 p(5) - 10 < 0
delta2 = - 1*[ 10 + 2 p(5)] = [ 10 + 2 p(5)] *i^2
p ( delta2) = p [ 10 + 2 p(5)] *i
x3 = [ -1 + p(5) - p ( 10 + 2 p(5))* i ] / 4
x4 = [ -1 + p(5) + p( 10 + 2 p(5))* i ]/ 4
=======================================