" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
(1 - cos4x) / (x sinx)
turunkan
= limit x mendekati 0
(4sin4x) / (sinx + x.cosx)
turunkan
= limit x mendekati 0
(16cos4x) / (cosx + cosx - x.sinx)
= 16.cos0 / (cos0 + cos0 - 0.sin0)
= 16.1 / (1 + 1 - 0)
= 16/2
= 8
= 2^3
==========
limit x mendekati 0
x^3 / (tanx - sinx)
= limit x mendekati 0
3x^2 / (sec^2x - cosx)
= limit x mendekati 0
6x / (sinx + 2tanx.sec^2x)
= limit x mendekati 0
6 / (sec^4x(4sin^2x + cos^5x + 2))
= 6 / (sec^4(0)(4sin^2(0) + cos^5(0) + 2))
= 6 / (1(0 + 1 + 2))
= 6/1(3)
= 6/3
= 2
==========
limit t mendekati 0
(3 - 3cosnt) / (1 - cosmt)
= limit t mendekati 0
(3.nsinnt) / (msinmt)
= limit t mendekati 0
(3n²cosnt) / (m²cosmt)
= (3n²cos0) / (m²cos0)
= 3n²/m²
=
=
= 2 .
= 2 . 1 . 2²
= 2³
17) =
=
=
=
=
=
=
= .cos x .
= 1/2 . 1 . (2)²
= 2
19) =
= 3 .
= 3 .n²/m²