dany jest wielomian P(x)=x³-6x²+ax+b. Wyznacz 'a' i 'b' jeśli f(4)=6 i f(1)=0
P(x)=x³-6x²+ax+b.
f(4)=6
f(1)=0
4^3 -6*4^2+4a+b=6
64-96+4a+b=6
4a+b=38
1^3-6*1^2+a+b=0
1-6+a+b=0
a+b=5
a+b=5 => a=5-b
4*(5-b)+b=38
20-4b+b=38
-3b=18
b=-6
a=5-(-6)=11
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
P(x)=x³-6x²+ax+b.
f(4)=6
f(1)=0
4^3 -6*4^2+4a+b=6
64-96+4a+b=6
4a+b=38
1^3-6*1^2+a+b=0
1-6+a+b=0
a+b=5
4a+b=38
a+b=5 => a=5-b
4*(5-b)+b=38
20-4b+b=38
-3b=18
b=-6
a=5-(-6)=11