Równanie y=1/2x^2 + 2bx-8, dla dowolnej liczby rzeczywistej b, opisuje pewną parabolę. Wyznacz wszystkie wartości parametru b, dla których wierzchołek paraboli leży pod osią OX.
Ma wyjść b neleży do (-2,2)
Bardzo proszę o pomoc. Jak uzyskać ten wynik? Dam naj.
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
y= -1/2x^2+2bx-8
Ramiona tej paraboli będą w dół, ponieważ a<0.
Δ=4b^2-4*8*1/2
Δ=4b^2-16
4b^2-16<0 /:4
b^2-4<0
b^2-4=0
b^2=4
b=2 i b=-2
b ∈ (-2,2)