rozwiąż:
a) 1+ 2sinxcosx =0
b)3cos2x + sin²x ≤ cos²x +√3
a)sin2x=√3
b)cos2x=1
c)sin (x+ π/3) =1/2
d)tg3x=1
e)ctg (2x +π/2) =√3
f)cos (π-3x)=√2/2
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
z.1
a) 1 + 2 sin x cos x = 0
2 sin x cos x = - 1
sin 2x = - 1
2x = (3/2) pi + 2 pi*k
x = (3/4) pi + pI*k, gdzie k - liczba całkowita
=============================================
b)
3 cos 2x + sin^2 x < = cos^2 x + p(3)
3*( cos ^2 x - sin ^2 x) + sin ^2 x < = cos^2 x + p(3)
3 cos^2 x -3 sin^2 x + sin^2 x - cos ^2 x < = p(3)
2 cos^2 x - 2 sin^2 x < = p(3) / : 2
cos^2 x - sin^2 x <= p(3)/2
cos 2x <= p(3)/2
30 st + 360 st * k < = 2 x < = 330 st + 360 st *k
15 st + 180 st*k < = x < = 165 st + 180 st * k, k - liczba całkowita
============================================================
z.2
a)
sin 2x = p(3)
Równanie sprzeczne, bo -1 < = sin 2x < = 1
---------------------------------------------------------
b) cos 2 x = 1
2x = 2 pi*k / : 2
x = pi*k, k - liczba całkowita
===========================
c)
sin ( x + pi/3) = 1/2
x + pi/3 = pi/6 + 2 pi*k v x + pi/3 = (5/6) pi + 2 pi*k
zatem
x = pi/6 - pi/3 + 2 pi*k v x = (5/6) pi - pi/3 + 2 pi*k
x = - pi/6 + 2 pi*k v x = pi/2 + 2 pi*k; k - liczba całkowita
============================================================
d)
tg 3x = 1
3x = pi/4 + pi*k
x = pi/12 + (pi/3)* k; k - liczba całkowita
========================================
e)
ctg ( 2x + pi/2) = p(3)
2x + pi/2 = pi/6 + pi*k
2x = pi/6 - pi/2 + pi*k
2x = - pi/3 + pi*k
x = - pi/6 + (pi/2)* k ; k - liczba całkowita
=======================================
f)
cos ( pi - 3x) = p(2)/2
pi -3x = pi/4 + 2 pi*k v pi - 3x = (7/4) pi + 2 pi*k
- 3x = pi/4 - pi + 2 pi*k v - 3x = (7/4) pi - pi + 2 pi*k
3x = pi - pi/4 - 2 pi*k v 3x = pi - (7/4) pi - 2 pi*k
3x = (3/4) pi - 2 pi*k v 3x = ( - 3/4) pi - 2 pi*k
x = (1/4) pi - (2/3) pi*k v x = ( -1/4) pi - (2/3) pi*k, k - liczba całkowita
=====================================================================