1. Wyznacz pierwiastki wielomianu W(x) = x^3 - x^2 - 4x + 4
2. Zapisz wyrażenie
(x-1) (x^2 +2x +1)
x^2 + 1
w prostrzej postaci i oblicz jego wartość liczbową dla
x = pierwiastek z 5 - 1
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
1.
W(x) = x^3 - x^2 - 4x + 4
W(x) = x^2(x - 1) - 4(x - 1)
W(x) = (x - 1)(x^2 - 4)
W(x) = (x - 1)(x - 2)(x + 2)
1 2 -2
odp. Pierwiastki tego wielomianu to: 2, 1, -2
2.
(x - 1)(x + 1)^2 (x - 1)(x + 1)(x +1) (x^2 - 1)(x + 1)
..... = ---------------------- = ------------------------- = ----------------------
x^2 + 1 x^2 + 1 x^2 + 1
x = √5 - 1
[ (√5 - 1)^2 - 1)] (√5 - 1 + 1) (5 - 2√5 + 1 - 1) * √5 (5 - 2√5) * √5
= ------------------------------------ = ---------------------------- = --------------------- =
(√5 - 1)^2 + 1 5 + 2√5 + 1 + 1 7 + 5√5
5√5 - 2*5 5√5 - 10 (5√5 - 10) * (5√5 - 7) 125 - 35√5 - 50√5 + 70
------------ = ------------ = ---------------------------= ------------------------------ =
5√5 + 7 5√5 + 7 (5√5 + 7) * (5√5 - 7) 125 - 49
195 - 85√5
------------ ---- odpwoiedź
76
1.
2.