1. tentukan penyelesaian kuadrat berikut dengan cara pemfaktoran : a. 2x²-7x+5=0 b. 5x²-27x=18 2. tentukan penyelesaian dari persamaan kuadrat berikut dengan cara melengkapkan kuadrat sempurna. a. x²+5x-6=0 b. 2x²=3x+6
Syubbana
1a) 2x^2 - 7x + 5 = 0 (2x - 5)(x - 1) = 0 2x - 5 = 0 2x = 5 x = 5/2 atau x - 1 = 0 x = 1
hp = {1 , 5/2}
1b) 5x^2 - 27x - 18 = 0 (5x + 3)(x - 6) = 0 5x + 3 = 0 5x = -3 x = -3/5 atau x - 6 = 0 x = 6
hp = { -3/5 , 6}
2a) x^2 + 5x -6 = 0 x^2 + 5x = 6 x^2 + 5x + 25/4 = 6+25/4 (x + 5/2)^2 = 12 1/4 x + 5/2 = +- V49/4 x + 5/2 = 7/2 atau x + 5/2 = -7/2 x = 7/2 - 5/2 x = -7/2 - 5/2 x = 1 x = -6
hp = { -6 , 1}
2b) 2x^2 - 3x = 6 x^2 - 3/2 x = 3 x^2 - 3/2 x + 9/16 = 3 + 9/16 (x - 3/4)^2 = 57/16 x - 3/4 = +-V(57/16) x - 3/4 = 1/4 V57 atau x - 3/4 = - 1/4 V57 x = 3/4 + 1/4 V57 x = 3/4 - 1/4 V57 = 1/4 (3 + V57) = 1/4 ( 3 - V57)
(2x - 5)(x - 1) = 0
2x - 5 = 0
2x = 5
x = 5/2
atau
x - 1 = 0
x = 1
hp = {1 , 5/2}
1b) 5x^2 - 27x - 18 = 0
(5x + 3)(x - 6) = 0
5x + 3 = 0
5x = -3
x = -3/5
atau
x - 6 = 0
x = 6
hp = { -3/5 , 6}
2a) x^2 + 5x -6 = 0
x^2 + 5x = 6
x^2 + 5x + 25/4 = 6+25/4
(x + 5/2)^2 = 12 1/4
x + 5/2 = +- V49/4
x + 5/2 = 7/2 atau x + 5/2 = -7/2
x = 7/2 - 5/2 x = -7/2 - 5/2
x = 1 x = -6
hp = { -6 , 1}
2b) 2x^2 - 3x = 6
x^2 - 3/2 x = 3
x^2 - 3/2 x + 9/16 = 3 + 9/16
(x - 3/4)^2 = 57/16
x - 3/4 = +-V(57/16)
x - 3/4 = 1/4 V57 atau x - 3/4 = - 1/4 V57
x = 3/4 + 1/4 V57 x = 3/4 - 1/4 V57
= 1/4 (3 + V57) = 1/4 ( 3 - V57)
tanda V = akar
^ = pangkat