1. Rysunek przedstawia trójkąt prostokątny. (Obrazek w załączniku. UWAGA: Tam gdzie jest α (alfa) jest β (beta) i na odwrót! Nie bierzcie pod uwagę tego h bo w zadaniu tego nie ma!)
Oblicz: sinα, sinβ, cosα, cosβ, gdy:
a. a=5, c=13
b. a=3, b=8
c. b=0,5, c=1,3
d. a=√3, b=√13
e. b=3√2 c=3√5
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
a) a=5 ,c=13
5²+b²=13²
25+b²=169
b²=169-25
b=√144=12
sinα b/c=12/13
sinβ=a/c=5/13
cosα =a/c =5/13
cosβ=b/c=12/13
b)a=3, b=8
3²+8²=c²
9+64=c²
c=√73
sinα =b/c=8/√73=(8√73)/73
sinβ=a/c=3/√73=(3√73)/73
cosα=a/c=3/√73=(3√73)/73
cosβ =b/c=8/√73=(8√73)/73
c)b=0,5 , c=1,3
(½)²+a²=(13/10)²
¼+a²=169/100
a²=169/100 - ¼
a²=169/100 - 25/100 =144/100
a=√144/100=12/10
sinα=b/c=(1/2 )/(13/10) =1/2 ·10/13 =10/26=5/13
sinβ=a/c=(12/10)/ (13/10)= 12/13
cosα=a/c= (12/10) /(13/10)=12/13
cosβ=b/c= (1/2)/(13/10)= 1/2 ·10/13 =10/26=5/13
d)a=√3 ,b=√13
(√3)²+(√13)²=c²
3+13=c²
c=√16=4
sinα=b/c=√13/4
sinβ=a/c=√3/4
cosα=a/c=√3/4
cosβ=b/c=√13/4
e)b=3√2 ,c=3√5
(3√2)²+a²=(3√5)²
18+a²=45
a²=45-18
a=√27=3√3
sinα=b/c=(3√2)/(3√5) =√2/√5=(√2·√5)/5=√10/5
sinβ=a/c=(3√3)/(3√5) =√3/√5=√15/5
cosα=a/c=√15/5
cosβ=b/c =√10/5