1. Oblicz obwod szesciakata foremnego, którego pole jest rowne 12pierwiastkow z 3. 2. W pewnym trojkacie prostokątnym równoramiennym, przyprostokatna ma długość 2pierwiastki z 3. Oblicz obwod tego trojkata. 3. Czy istnieje wielokat, który posiada 104 przekatne? Jeśli tak to ile ma katow? 4. Jaka jest odległość miedzy srodkami okręgów o r=10, 8 gdy mniejszy przechodzi przez srodek pierwszego? 5. Najdłuższy bok pewnego trojkata prostokątnego równoramiennego ma 10cm. Oblicz pole tego trojkata. 6. Czy istnieje trojkat, który posiada 35 przekatnych? Jeśli tak to ile ma bokow? 7. Oblicz obwod szczesciokata foremnego, którego pole jest rowne 48pierwiastkow z 3cm?
daje duzo punktow ale za to wszystko ma byc rozwiazane!
tim
1. Oblicz obwod szesciakata foremnego, którego pole jest rowne 12pierwiastkow z 3.
P = 6a²√3 / 4 = 12√3 6a² = 48 a² = 8 a = 2√2 ( = √8)
Obwód = 6a = 12√2
2. W pewnym trojkacie prostokątnym równoramiennym, przyprostokatna ma długość 2pierwiastki z 3. Oblicz obwod tego trojkata.
W takim trójkącie boki mają długość a, a oraz a√2 (z tw. Pitagorasa). a²+a²=b² b = a√2
a = 2√3 a = 2√3 a√2 = 2√6 Obwód = 4√3 + 2√6 = √3(4 + 2√2)
3. Czy istnieje wielokat, który posiada 104 przekatne? Jeśli tak to ile ma katow?
Wzór na ilość przekątnych dla n-boków. n(n-3) / 2 = 104 n(n-3) = 208 n = 16 lub n=-13
Odp. Wielokąt ma 16 boków i 16 kątów.
4. Jaka jest odległość miedzy srodkami okręgów o r=10, 8 gdy mniejszy przechodzi przez srodek pierwszego?
Załącznik
5. Najdłuższy bok pewnego trojkata prostokątnego równoramiennego ma 10cm. Oblicz pole tego trojkata.
W takim trójkącie boki mają długość a, a oraz a√2 (z tw. Pitagorasa). a²+a²=b² b = a√2
b = a√2 = 10 a = 10/√2 = 5√2 (po usunięciu niewymierności) Pole = a * a / 2 = 5√2 * 5√2 / 2 = 25 * 2 /2 = 25
6. Czy istnieje trojkat, który posiada 35 przekatnych? Jeśli tak to ile ma bokow?
Trójkąt na pewno nie.
7. Oblicz obwod szczesciokata foremnego, którego pole jest rowne 48pierwiastkow z 3cm? P = 6a²√3 / 4 = 48√3 6a² = 192 a² = 32 a = 4√2 ( = √32)
P = 6a²√3 / 4 = 12√3
6a² = 48
a² = 8
a = 2√2 ( = √8)
Obwód = 6a = 12√2
2. W pewnym trojkacie prostokątnym równoramiennym, przyprostokatna ma długość 2pierwiastki z 3. Oblicz obwod tego trojkata.
W takim trójkącie boki mają długość a, a oraz a√2 (z tw. Pitagorasa).
a²+a²=b²
b = a√2
a = 2√3
a = 2√3
a√2 = 2√6
Obwód = 4√3 + 2√6 = √3(4 + 2√2)
3. Czy istnieje wielokat, który posiada 104 przekatne? Jeśli tak to ile ma katow?
Wzór na ilość przekątnych dla n-boków.
n(n-3) / 2 = 104
n(n-3) = 208
n = 16 lub n=-13
Odp. Wielokąt ma 16 boków i 16 kątów.
4. Jaka jest odległość miedzy srodkami okręgów o r=10, 8 gdy mniejszy przechodzi przez srodek pierwszego?
Załącznik
5. Najdłuższy bok pewnego trojkata prostokątnego równoramiennego ma 10cm. Oblicz pole tego trojkata.
W takim trójkącie boki mają długość a, a oraz a√2 (z tw. Pitagorasa).
a²+a²=b²
b = a√2
b = a√2 = 10
a = 10/√2 = 5√2 (po usunięciu niewymierności)
Pole = a * a / 2 = 5√2 * 5√2 / 2 = 25 * 2 /2 = 25
6. Czy istnieje trojkat, który posiada 35 przekatnych? Jeśli tak to ile ma bokow?
Trójkąt na pewno nie.
7. Oblicz obwod szczesciokata foremnego, którego pole jest rowne 48pierwiastkow z 3cm?
P = 6a²√3 / 4 = 48√3
6a² = 192
a² = 32
a = 4√2 ( = √32)
Obwód = 6a = 24√2