zad1 Liczby -4x - 5, x – 4, x^2 - 4x są kolejnymi wyrazami rosnącego ciągu geometrycznego. Oblicz x.
ciąg geometryczny rosnący: -4x-5, x-4, x^2 - 4x
(x^2 - 4x/(x-4) = (x-4)/(-4x-5)
Z: x =/= 4
x =/= -1,25
x(x-4)/(x-4) = (x-4)/-4x-5)
x = (x-4)/(-4x-5)
x(-4x-5) = x-4
-x^2 -5x = x- 4
-x^2 - 5x -x + 4 = 0
-4x^2 - 6x + 4 = 0
D(delta) = b^2 - 4ac = 36 + 64 = 100
VD = 10
x1 = (-b-VD)/2a
x1 = (6-10)/(-8) = 1/2
x2 = (-b+VD/2a
x2 = (6+10)/(-8) = -2 (odpada,bo ciąg jest rosnący)
x = 1/2
======
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
ciąg geometryczny rosnący: -4x-5, x-4, x^2 - 4x
(x^2 - 4x/(x-4) = (x-4)/(-4x-5)
Z: x =/= 4
x =/= -1,25
x(x-4)/(x-4) = (x-4)/-4x-5)
x = (x-4)/(-4x-5)
x(-4x-5) = x-4
-x^2 -5x = x- 4
-x^2 - 5x -x + 4 = 0
-4x^2 - 6x + 4 = 0
D(delta) = b^2 - 4ac = 36 + 64 = 100
VD = 10
x1 = (-b-VD)/2a
x1 = (6-10)/(-8) = 1/2
x2 = (-b+VD/2a
x2 = (6+10)/(-8) = -2 (odpada,bo ciąg jest rosnący)
x = 1/2
======