wyznacz wzór na n-ty wyraz ciągu arytmetycznego, jeśli iloczyn wyrazu pierwszego i drugiego wynosi 21, a suma wyrazu drugiego i czwartego 22.
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
a1 * a2 = 21
a2 + a4 = 22
a1 *(a1 + r) = 21
a1 + r + a1 + 3r = 22
a1^2 + a1r = 21
2a1 + 4r = 22
a1^2 + a1r = 21
a1 + 2r = 11
a1^2 + a1r = 21
a1 = 11 - 2r
(11 - 2r)^2 + (11 - 2r) * r = 21
121 - 44r + 4r^2 + 11r - 2r^2 = 21
2r^2 - 33r + 100 = 0
Δ = 1089 - 800 = 289
√Δ = 17
r1 = (33 - 17) / 4 = 16/4 = 4
r2 = (33 +17) / 4 = 50/4 = 12,5
Jeśli r = 4 to a1 = 11 - 2*4 = 11 - 8 = 3
Jeśli r = 12,5 to a1 = -14
an = a1 + (n -1) * r
an = 3 + (n - 1) * 4
an = 3 + 4n - 4
an = 4n - 1