w pewnym ciagu suma n poczatkowych wyrazow wyraza sie wzorem Sn=2n²-12n. wykaz ze jest to ciag arytmetyczny.
prosze o bardzo dokladne obliczenia+wyjasnienie
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Sn = 2 n^2 - 12 n
zatem
Sn-1 = 2 *(n-1)^2 - 12*(n-1) = 2*(n^2 -2n + 1) -12 n +12 = 2 n^2 - 4 n + 2 - 12 n + 12 =
= 2 n^2 - 16 n + 14
================
i a1 + a2 + a3 + ... + an-1] + an = Sn
Sn-1 + an = Sn
an = Sn - Sn-1
zatem
an = [ 2 n^2 - 12 n] - [ 2 n^2 - 16 n + 14 ] = 4n - 14
an = 4 n - 14
============
zatem an+1 = 4*(n +1) - 14 = 4 n + 4 - 14 = 4 n - 10
dlatego więc
an+1 - an = [ 4 n - 10 ] - [ 4n - 14 ] = 4
r = 4
======
a1 = 4*1 - 14 = 4 - 14 = - 10
Odp. Jest to ciąg arytmetyczny o a1 = - 10 i różnicy r = 4.
===============================================================