Rozwiąz równanie : x (do potegi 4) - 3x (do potęgi 2) +2=0
x⁴-3x²+2=0
x⁴-x²-2x²+2=0
x²(x²-1)-2(x²-1)=0
(x²-2)(x²-1)=0
(x-√2)(x+√2)(x-1)(x+1)=0
x=-√2 lub x=-1 lub x=1 lub x=√2
x neleży do{-√2;-1;1;√2}
x²=t ≥0
t²-3t+2=0
t²-t-2t+2=0
t(t-1)-2(t-1)=0
(t-1)(t-2)=0
t-1=0 v t-2=0
t=1 v t=2
x²=1 v x²=2
Odp. x=-√2 v x=-1 v x=1 v x=√2
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
x⁴-3x²+2=0
x⁴-x²-2x²+2=0
x²(x²-1)-2(x²-1)=0
(x²-2)(x²-1)=0
(x-√2)(x+√2)(x-1)(x+1)=0
x=-√2 lub x=-1 lub x=1 lub x=√2
x neleży do{-√2;-1;1;√2}
x²=t ≥0
t²-3t+2=0
t²-t-2t+2=0
t(t-1)-2(t-1)=0
(t-1)(t-2)=0
t-1=0 v t-2=0
t=1 v t=2
x²=1 v x²=2
Odp. x=-√2 v x=-1 v x=1 v x=√2